ترغب بنشر مسار تعليمي؟ اضغط هنا

Coloring vertices of a graph or finding a Meyniel obstruction

57   0   0.0 ( 0 )
 نشر من قبل Benjamin Leveque
 تاريخ النشر 2005
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Kathie Cameron




اسأل ChatGPT حول البحث

A Meyniel obstruction is an odd cycle with at least five vertices and at most one chord. A graph is Meyniel if and only if it has no Meyniel obstruction as an induced subgraph. Here we give a O(n^2) algorithm that, for any graph, finds either a clique and coloring of the same size or a Meyniel obstruction. We also give a O(n^3) algorithm that, for any graph, finds either aneasily recognizable strong stable set or a Meyniel obstruction.



قيم البحث

اقرأ أيضاً

We introduce the notion of a properly ordered coloring (POC) of a weighted graph, that generalizes the notion of vertex coloring of a graph. Under a POC, if $xy$ is an edge, then the larger weighted vertex receives a larger color; in the case of equa l weights of $x$ and $y$, their colors must be different. In this paper, we shall initiate the study of this special coloring in graphs. For a graph $G$, we introduce the function $f(G)$ which gives the maximum number of colors required by a POC over all weightings of $G$. We show that $f(G)=ell(G)$, where $ell(G)$ is the number of vertices of a longest path in $G$. Another function we introduce is $chi_{POC}(G;t)$ giving the minimum number of colors required over all weightings of $G$ using $t$ distinct weights. We show that the ratio of $chi_{POC}(G;t)-1$ to $chi(G)-1$ can be bounded by $t$ for any graph $G$; in fact, the result is shown by determining $chi_{POC}(G;t)$ when $G$ is a complete multipartite graph. We also determine the minimum number of colors to give a POC on a vertex-weighted graph in terms of the number of vertices of a longest directed path in an orientation of the underlying graph. This extends the so called Gallai-Hasse-Roy-Vitaver theorem, a classical result concerning the relationship between the chromatic number of a graph $G$ and the number of vertices of a longest directed path in an orientation of $G$.
We obtain improved upper bounds and new lower bounds on the chromatic number as a linear function of the clique number, for the intersection graphs (and their complements) of finite families of translates and homothets of a convex body in $RR^n$.
We study a combinatorial coloring game between two players, Spoiler and Algorithm, who alternate turns. First, Spoiler places a new token at a vertex in $G$, and Algorithm responds by assigning a color to the new token. Algorithm must ensure that tok ens on the same or adjacent vertices receive distinct colors. Spoiler must ensure that the token graph (in which two tokens are adjacent if and only if their distance in $G$ is at most $1$) has chromatic number at most $w$. Algorithm wants to minimize the number of colors used, and Spoiler wants to force as many colors as possible. Let $f(w,G)$ be the minimum number of colors needed in an optimal Algorithm strategy. A graph $G$ is online-perfect if $f(w,G) = w$. We give a forbidden induced subgraph characterization of the class of online-perfect graphs. When $G$ is not online-perfect, determining $f(w,G)$ seems challenging; we establish $f(w,G)$ asymptotically for some (but not all) of the minimal graphs that are not online-perfect. The game is motivated by a natural online coloring problem on the real line which remains open.
A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wirel ess networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.
This tutorial review provides a guiding reference to researchers who want to have an overview of the large body of literature about graph spanners. It reviews the current literature covering various research streams about graph spanners, such as diff erent formulations, sparsity and lightness results, computational complexity, dynamic algorithms, and applications. As an additional contribution, we offer a list of open problems on graph spanners.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا