ﻻ يوجد ملخص باللغة العربية
This tutorial review provides a guiding reference to researchers who want to have an overview of the large body of literature about graph spanners. It reviews the current literature covering various research streams about graph spanners, such as different formulations, sparsity and lightness results, computational complexity, dynamic algorithms, and applications. As an additional contribution, we offer a list of open problems on graph spanners.
A emph{spanner} of a graph $G$ is a subgraph $H$ that approximately preserves shortest path distances in $G$. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions
Many hard algorithmic problems dealing with graphs, circuits, formulas and constraints admit polynomial-time upper bounds if the underlying graph has small treewidth. The same problems often encourage reducing the maximal degree of vertices to simpli
A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive proof of the fact that any plane graph $G$ contains a cactus subgraph $C$ where $C$ contains at least a $frac{1}{6}$ fraction of the triangular faces of $G
Inductive $k$-independent graphs generalize chordal graphs and have recently been advocated in the context of interference-avoiding wireless communication scheduling. The NP-hard problem of finding maximum-weight induced $c$-colorable subgraphs, whic
There has been significant recent progress on algorithms for approximating graph spanners, i.e., algorithms which approximate the best spanner for a given input graph. Essentially all of these algorithms use the same basic LP relaxation, so a variety