ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortices in magnetically coupled superconducting layered systems

71   0   0.0 ( 0 )
 نشر من قبل Roman G. Mints
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pancake vortices in stacks of thin superconducting films or layers are considered. It is stressed that in the absence of Josephson coupling topological restrictions upon possible configurations of vortices are removed and various examples of structures forbidden in bulk superconductors are given. In particular, it is shown that vortices may skip surface layers in samples of less than a certain size R_c which might be macroscopic. The Josephson coupling suppresses R_c estimates.



قيم البحث

اقرأ أيضاً

The distribution of the transport current in a superconducting filament aligned parallel to the flat surface of a semi-infinite bulk magnet is studied theoretically. An integral equation governing the current distribution in the Meissner state of the filament is derived and solved numerically for various filament-magnet distances and different relative permeabilities. This reveals that the current is depressed on the side of the filament adjacent to the surface of the magnet and enhanced on the averted side. Substantial current redistributions in the filament can already occur for low values of the relative permeability of the magnet, when the distance between the filament and the magnet is short, with evidence of saturation at moderately high values of this quantity, similar to the findings for magnetically shielded strips.
239 - S. G. Tan , L. J. Li , Y. Liu 2012
Polycrystalline sample of the new layered superconductor Bi4O4S3 is successfully synthesized by solid-state reaction method by using Bi, S and Bi2O3 powders with one step reaction. The superconducting transition temperature (Tconset=4.5 K), the zero resistance transition temperature (Tc0=4.07 K) and the diamagnetic transition temperature (4.02 K at H=10 Oe) were confirmed by electrical transport and magnetic measurements. Also, our results indicate a typical type II-superconductor behavior. In addition, a large thermoelectric effect was observed with a dimensionless thermoelectric figure of merit (ZT) of about 0.03 at 300K, indicating Bi4O4S3 can be a potential thermoelectric material.
The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility m easurements. The crystal structure under pressure was examined using synchrotron X-ray diffraction at SPring-8. In the low-pressure regime, bulk superconductivity with a transition temperature Tc of ~ 4.5 K was induced by pressure, which was achieved by in-plane chemical pressure effect owing to the compression of the tetragonal structure. In the high-pressure regime above 6.4 GPa, a structural symmetry lowering was observed, and superconducting transitions with a Tc ~ 8 K were observed. Our results suggest the possible commonality on the factor essential for Tc in Bi-based superconductors with two-layer-type and four-layer-type conducting layers.
89 - Canon Sun , Shu-Ping Lee , 2019
A monopole harmonic superconductor is a novel topological phase of matter with topologically protected gap nodes that result from the non-trivial Berry phase structure of Cooper pairs. In this work we propose to realize a monopole superconductor by t he proximity effect between a time-reversal broken Weyl semi-metal and an $s$-wave superconductor. Furthermore, we study the zero-energy vortex bound states in this system by projection methods and by exact solutions. The zero modes exhibit a non-trivial phase winding in real space as a result of the non-trivial winding of the order parameter in momentum space. By mapping the Hamiltonian to the $(1+1)$d Dirac Hamiltonian, it is shown that the zero modes, analogous to the Jackiw-Rebbi mode, are protected by the index theorem. Finally, we propose possible experimental realizations.
Bulk superconductivity was discovered in BaRh2P2 (Tc = 1.0 K) and BaIr2P2 (Tc = 2.1 K), which are isostructural to (Ba,K)Fe2As2, indicative of the appearance of superconductivity over a wide variety of layered transition metal pnictides. The electron ic specific heat coefficient gamma in the normal state, 9.75 and 6.86 mJ/mol K2 for BaRh2P2 and BaIr2P2 respectively, indicate that the electronic density of states of these two compounds are moderately large but smaller than those of Fe pnictide superconductors. The Wilson ratio close to 1 indeed implies the absence of strong electron correlations and magnetic fluctuations unlike Fe pnictides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا