ﻻ يوجد ملخص باللغة العربية
We study the dynamics of island nucleation in the presence of adsorbates using kinetic Monte Carlo simulations of a two-species growth model. Adatoms (A-atoms) and impurities (B-atoms) are codeposited, diffuse and aggregate subject to attractive AA- and AB-interactions. Activated exchange of adatoms with impurities is identified as the key process to maintain decoration of island edges by impurities during growth. While the presence of impurities strongly increases the island density, a change in the scaling of island density with flux, predicted by a rate equation theory for attachment-limited growth [D. Kandel, Phys. Rev. Lett. 78, 499 (1997)], is not observed. We argue that, within the present model, even completely covered island edges do not provide efficient barriers to attachment.
The effect of impurities on epitaxial growth in the submonolayer regime is studied using kinetic Monte Carlo simulations of a two-species solid-on-solid growth model. Both species are mobile, and attractive interactions among adatoms and between adat
The effects of mobility of small islands on island growth in molecular beam epitaxy are studied. It is shown that small island mobility affects both the scaling and morphology of islands during growth. Three microscopic models are considered, in whic
Understanding surface dynamics during epitaxial film growth is key to growing high quality materials with controllable properties. X-ray photon correlation spectroscopy (XPCS) using coherent x-rays opens new opportunities for in situ observation of a
We present a combined experimental and theoretical study of submonolayer heteroepitaxial growth of Ag on Si(111)-7x7 at temperatures from 420 K to 550 K when Ag atoms can easily diffuse on the surface and the reconstruction 7x7 remains stable. STM me
The interaction between two different materials can present novel phenomena that are quite different from the physical properties observed when each material stands alone. Strong electronic correlations, such as magnetism and superconductivity, can b