ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic effects in sulfur-decorated graphene

54   0   0.0 ( 0 )
 نشر من قبل Choongyu Hwang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction between two different materials can present novel phenomena that are quite different from the physical properties observed when each material stands alone. Strong electronic correlations, such as magnetism and superconductivity, can be produced as the result of enhanced Coulomb interactions between electrons. Two-dimensional materials are powerful candidates to search for the novel phenomena because of the easiness of arranging them and modifying their properties accordingly. In this work, we report magnetic effects of graphene, a prototypical non-magnetic two-dimensional semi-metal, in the proximity with sulfur, a diamagnetic insulator. In contrast to the well-defined metallic behaviour of clean graphene, an energy gap develops at the Fermi energy for the graphene/sulfur compound with decreasing temperature. This is accompanied by a steep increase of the resistance, a sign change of the slope in the magneto-resistance between high and low fields, and magnetic hysteresis. A possible origin of the observed electronic and magnetic responses is discussed in terms of the onset of low-temperature magnetic ordering. These results provide intriguing insights on the search for novel quantum phases in graphene-based compounds.



قيم البحث

اقرأ أيضاً

Macroscopic magnetic properties and microscopic magnetic structure of Rb$_2$Mn$_3$(MoO$_4$)$_3$(OH)$_2$ (space group $Pnma$) are investigated by magnetization, heat capacity and single-crystal neutron diffraction measurements. The compounds crystal s tructure contains bond-alternating [Mn$_3$O$_{11}$]$^{infty}$ chains along the $b$-axis, formed by isosceles triangles of Mn ions occupying two crystallographically nonequivalent sites (Mn1 site on the base and Mn2 site on the vertex). These chains are only weakly linked to each other by nonmagnetic oxyanions. Both SQUID magnetometry and neutron diffraction experiments show two successive magnetic transitions as a function of temperature. On cooling, it transitions from a paramagnetic phase into an incommensurate phase below 4.5~K with a magnetic wavevector near ${bf k}_{1} = (0,~0.46,~0)$. An additional commensurate antiferromagnetically ordered component arises with ${bf k}_{2} = (0,~0,~0)$, forming a complex magnetic structure below 3.5~K with two different propagation vectors of different stars. On further cooling, the incommensurate wavevector undergoes a lock-in transition below 2.3~K. The experimental results suggest that the magnetic superspace group is $Pnma.1(0b0)s0ss$ for the single-${bf k}$ incommensurate phase and is $Pnma(0b0)00s$ for the 2-${bf k}$ magnetic phase. We propose a simplified magnetic structure model taking into account the major ordered contributions, where the commensurate ${bf k}_{2}$ defines the ordering of the $c$-axis component of Mn1 magnetic moment, while the incommensurate ${bf k}_{1}$ describes the ordering of the $ab$-plane components of both Mn1 and Mn2 moments into elliptical cycloids
A weak perpendicular magnetic field, $B$, breaks the chiral symmetry of each valley in the electron spectrum of graphene, preserving the overall chiral symmetry in the Brillouin zone. We explore the consequences of this symmetry breaking for the inte raction effects in graphene. In particular, we demonstrate that the electron-electron interaction lifetime acquires an anomalous $B$-dependence. Also, the ballistic zero-bias anomaly, $delta u(omega)$, where $omega$ is the energy measured from the Fermi level, emerges at a weak $B$ and has the form $delta u(B)sim B^2/omega^2$. Temperature dependence of the magnetic-field corrections to the thermodynamic characteristics of graphene is also anomalous. We discuss experimental manifestations of the effects predicted. The microscopic origin of the $B$-field sensitivity is an extra phase acquired by the electron wave-function resulting from the chirality-induced pseudospin precession.
Magnetoelectric effect is a fundamental physics phenomenon that synergizes electric and magnetic degrees of freedom to generate distinct material responses like electrically tuned magnetism, which serves as a key foundation of the emerging field of s pintronics. Here, we show by first-principles studies that ferroelectric (FE) polarization of an In2Se3 monolayer can modulate the magnetism of an adjacent transition-metal (TM) decorated graphene layer via an FE induced electronic transition. The TM nonbonding d-orbital shifts downward and hybridizes with carbon p states near the Fermi level, suppressing the magnetic moment, under one FE polarization, but on reversed FE polarization this TM d-orbital moves upward, restoring the original magnetic moment. This finding of robust magnetoelectric effect in TM decorated graphene/In2Se3 heterostructure offers powerful insights and a promising avenue for experimental exploration of FE controlled magnetism in 2D materials.
We calculate magnetic anisotropy energy of Fe and Ni by taking into account the effects of strong electronic correlations, spin-orbit coupling, and non-collinearity of intra-atomic magnetization. The LDA+U method is used and its equivalence to dynami cal mean-field theory in the static limit is derived. The effects of strong correlations are studied along several paths in $(U,J)$ parameter space. Both experimental magnitude of MAE and direction of magnetization are predicted correctly near $U=1.9 eV$, $J=1.2 eV$ for Ni and $U=1.2 eV$, $J=0.8 eV$ for Fe. The modified one-electron spectra by strong correlations are emphasized in conjunction with magnetic anisotropy.
We report a systematic first-principles investigation of the influence of different magnetic insulators on the magnetic proximity effect induced in graphene. Four different magnetic insulators are considered: two ferromagnetic europium chalcogenides namely EuO and EuS and two ferrimagnetic insulators yttrium iron garnet (YIG) and cobalt ferrite (CFO). The obtained exchange-splitting varies from tens to hundreds of meV. We also find an electron doping induced by YIG and europium chalcogenides substrates, that shift the Fermi level up to 0.78 eV and 1.3 eV respectively, whereas hole doping up to 0.5 eV is generated by CFO. Furthermore, we study the variation of the extracted exchange and tight binding parameters as a function of the EuO and EuS thicknesses. We show that those parameters are robust to thickness variation such that a single monolayer of magnetic insulator can induce a large magnetic proximity effect on graphene. Those findings pave the way towards possible engineering of graphene spin-gating by proximity effect especially in view of recent experiments advancement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا