ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous and correlated nucleation during nonstandard island growth at Ag/Si(111)-7x7 heteroepitaxy

128   0   0.0 ( 0 )
 نشر من قبل Pavel Koc\\'an
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Kocan




اسأل ChatGPT حول البحث

We present a combined experimental and theoretical study of submonolayer heteroepitaxial growth of Ag on Si(111)-7x7 at temperatures from 420 K to 550 K when Ag atoms can easily diffuse on the surface and the reconstruction 7x7 remains stable. STM measurements for coverages from 0.05 ML to 0.6 ML show that there is an excess of smallest islands (each of them fills up just one half-unit cell - HUC) in all stages of growth. Formation of 2D wetting layer proceeds by continuous nucleation of the smallest islands in the proximity of larger 2D islands (extended over several HUCs) and following coalescence with them. Such a growth scenario is verified by kinetic Monte Carlo simulation which uses a coarse-grained model based on a limited capacity of HUC and a mechanism which increases nucleation probability in a neighbourhood of already saturated HUCs (correlated nucleation). The model provides a good fit for experimental dependences of the relative number of Ag-occupied HUCs and the preference in occupation of faulted HUCs on temperature and amount of deposited Ag. Parameters obtained for the hopping of Ag adatoms between HUCs agree with those reported earlier for initial stages of growth. The model provides two new parameters - maximum number of Ag atoms inside HUC, and on HUC boundary.

قيم البحث

اقرأ أيضاً

We demonstrate that it is possible to mechanically exfoliate graphene under ultra high vacuum conditions on the atomically well defined surface of single crystalline silicon. The flakes are several hundred nanometers in lateral size and their optical contrast is very faint in agreement with calculated data. Single layer graphene is investigated by Raman mapping. The G and 2D peaks are shifted and narrowed compared to undoped graphene. With spatially resolved Kelvin probe measurements we show that this is due to p-type doping with hole densities of n_h simeq 6x10^{12} cm^{-2}. The in vacuo preparation technique presented here should open up new possibilities to influence the properties of graphene by introducing adsorbates in a controlled way.
We report an experimental refinement of the local charge density at the Si (111) 7x7 surface utilizing a combination of x-ray and high energy electron diffraction. By perturbing about a bond-centered pseudoatom model, we find experimentally that the adatoms are in an anti-bonding state with the atoms directly below. We are also able to experimentally refine a charge transfer of 0.26(4) e- from each adatom site to the underlying layers. These results are compared with a full-potential all-electron density functional DFT calculation.
208 - P. Kocan 2004
A growth model and parameters obtained in our previous experimental (scanning tunneling microscopy, KMC) and theoretical (kinetic Monte Carlo simulations, KMC) studies of Ag/Si(111)-(7x7) heteroepitaxy were used to optimise growth conditions (tempera ture and deposition rate) for the most ordered self-organized growth of Ag island arrays on the (7x7) reconstructed surface. The conditions were estimated by means of KMC simulations using the preference in occupation of half unit cells (HUCs) of F-type as a criterion of island ordering. Morphology of experimentally prepared island structures was studied by STM. High degree of experimentally obtained island ordering is compared with the simulated data and results are discussed with respect to the model and parameters used at the KMC simulations.
144 - Ye-Chuan Xu , Bang-Gui Liu 2008
We propose a natural two-speed model for the phase dynamics of Si(111) 7$times$7 phase transition to high temperature unreconstructed phase. We formulate the phase dynamics by using phase-field method and adaptive mesh refinement. Our simulated resul ts show that a 7$times$7 island decays with its shape kept unchanged, and its area decay rate is shown to be a constant increasing with its initial area. LEEM experiments concerned are explained, which confirms that the dimer chains and corner holes are broken first in the transition, and then the stacking fault is remedied slowly. This phase-field method is a reliable approach to phase dynamics of surface phase transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا