ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of metallic behavior in two dimensions by spin flip scattering

83   0   0.0 ( 0 )
 نشر من قبل Sean Washburn
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of the disorder on the metallic behavior of a two-dimensional electron system in silicon. The temperature dependence of conductivity $sigma (T)$ was measured for different values of substrate bias, which changes both potential scattering and the concentration of disorder-induced local magnetic moments. We find that the latter has a much more profound effect on $dsigma/dT$. In fact, the data suggest that in the limit of $Tto 0$ the metallic behavior, as characterized by $dsigma/dT < 0$, is suppressed by an arbitrarily small amount of spin flip scattering by local magnetic moments.



قيم البحث

اقرأ أيضاً

Magnetoconductance (MC) in a parallel magnetic field B has been measured in a two-dimensional electron system in Si, in the regime where the conductivity decreases as sigma (n_s,T,B=0)=sigma (n_s,T=0) + A(n_s)T^2 (n_s -- carrier density) to a non-zer o value as temperature T->0. Very near the B=0 metal-insulator transition, there is a large initial drop in sigma with increasing B, followed by a much weaker sigma (B). At higher n_s, the initial drop of MC is less pronounced.
Experiments on a sufficiently disordered two-dimensional (2D) electron system in silicon reveal a new and unexpected kind of metallic behavior, where the conductivity decreases as sigma (n_s,T)=sigma (n_s,T=0)+A(n_s)T^2 (n_s-carrier density) to a non -zero value as temperature T->0. In 2D, the existence of a metal with dsigma/dT>0 is very surprising. In addition, a novel type of a metal-insulator transition obtains, which is unlike any known quantum phase transition in 2D.
The temperature dependence of conductivity $sigma (T)$ in the metallic phase of a two-dimensional electron system in silicon has been studied for different concentrations of local magnetic moments. The local moments have been induced by disorder, and their number was varied using substrate bias. The data suggest that in the limit of $Tto 0$ the metallic behavior, as characterized by $dsigma/dT < 0$, is suppressed by an arbitrarily small amount of scattering by local magnetic moments.
We investigate electronic correlation effects on edge states of quantum spin-Hall insulators within the Kane-Mele-Hubbard model by means of quantum Monte Carlo simulations. Given the U(1) spin symmetry and time-reversal invariance, the low-energy the ory is the helical Tomanaga-Luttinger model, with forward scattering only. For weak to intermediate interactions, this model correctly describes equal-time spin and charge correlations, including their doping dependence. As apparent from the Drude weight, bulk states become relevant in the presence of electron-electron interactions, rendering the forward-scattering model incomplete. Strong correlations give rise to slowly decaying transverse spin fluctuations, and inelastic spin-flip scattering strongly modifies the single-particle spectrum, leading to graphene-like edge state signatures. The helical Tomanaga-Luttinger model is completely valid only asymptotically in the weak-coupling limit.
Magnetic state of exchanged biased CoO(20nm)/Co($d_F$) bilayer ($d_F$=5-20nm) was studied by means of polarized neutron reflectometry. By spacing of CoO/Co bilayer and Al$_2$O$_3$ substrate with Nb(20nm) layer we created waveguide structure which all owed us to significantly enhance intensity of spin-flip (SF) scattering in the position of optical resonances. For the trained sample with thinnest Co(5nm) we detected strong SF scattering at the resonance position (up to 30% of incoming intensity) speaking about high non-collinearity of the system. As $d_F$ increases, the intensity of SF scattering linearly decreases. At the same time we observed asymmetry of up-down and down-up scattering channels at the resonance positions. We attribute this asymmetry to the Zeeman splitting of neutrons energies with different initial polarization taking place in high external field. Analysis, however, shows that the applied in the PNR experiment external field is not enough to quantitatively explain the observed asymmetry for the samples with $d_F > $ 5nm and we have to postulate presence of additional magnetic field produced by sample. We attribute this additional field to the stray field produced by chiral Bloch domain walls. The chirality of the domain walls can be explained by Dzyaloshinskii-Moriya interaction arising at the CoO/Co interface. Our results can be useful for designing of spintronic devices using exchange bias effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا