ﻻ يوجد ملخص باللغة العربية
We study the attractive interactions between rod-like charged polymers in solution that appear in the presence of multi-valence counterions. The counterions condensed to the rods exhibit both a strong transversal polarization and a longitudinal crystalline arrangement. At short distances between the rods, the fraction of condensed counterions increases, and the majority of these occupy the region between the rods, where they minimize their repulsive interactions by arranging themselves into packing structures. The attractive interaction is strongest for multivalent counterions. Our model takes into account the hard-core volume of the condensed counterions and their angular distribution around the rods. The hard core constraint strongly suppresses longitudinal charge fluctuations.
We investigate the properties of rigid polyelectrolyte solutions in presence of monovalent salt. The free energy within the Debye-Huckel-Bjerrum (DHBj) theory [M. E. Fisher and Y. Levin, {it Phys. Rev. Lett.} 71, 3826 (1993)] is constructed. It is
Naturally occuring or man-made systems displaying periodic spatial modulations of their properties on a nanoscale constitute superlattices. Such modulated structures are important both as prototypes of simple nanotechnological devices and as particul
We simulate a strongly size-disperse hard-sphere fluid confined between two parallel, hard walls. We find that confinement induces crystallization into n-layered hexagonal lattices and a novel honeycomb-shaped structure, facilitated by fractionation.
We analyze, by means of an RPA calculation, the conditions under which a mixture of oppositely charged polyelectrolytes can micro-segregate in the neighborhood of a charged surface creating a layered structure. A number of stable layers can be formed
In mixtures of colloids and nonadsorbing polyelectrolytes, a Donnan potential arises across the region between surfaces that are depleted of polyelectrolyte and the rest of the system. This Donnan potential tends to shift the polyelectrolyte density