ترغب بنشر مسار تعليمي؟ اضغط هنا

Repulsive and attractive depletion forces mediated by nonadsorbing polyelectrolytes in the Donnan limit

69   0   0.0 ( 0 )
 نشر من قبل Jasper Landman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In mixtures of colloids and nonadsorbing polyelectrolytes, a Donnan potential arises across the region between surfaces that are depleted of polyelectrolyte and the rest of the system. This Donnan potential tends to shift the polyelectrolyte density profile towards the colloidal surface and leads to local accumulation of polyelectrolytes. We derive a zero-field theory for the disjoining pressure between two parallel flat plates. Polyelectrolyte is allowed to enter the confined interplate region at the cost of a conformational free energy penalty. The resulting disjoining pressure shows a crossover to a repulsive regime when the interplate separation gets smaller than the size of the polyelectrolyte chain, followed by an attractive part. We find a quantitative match between the model and self-consistent field computations that take into account the full Poisson-Boltzmann electrostatics.

قيم البحث

اقرأ أيضاً

Realising strong photon-photon interactions in a solid-state setting is a major goal with far reaching potential for optoelectronic applications. Using Landaus quasiparticle framework combined with a microscopic many-body theory, we explore the inter actions between exciton-polaritons and trions in a two-dimensional semiconductor injected with an electron gas inside a microcavity. We show that particle-hole excitations in the electron gas mediate an attractive interaction between the polaritons, whereas a trion-polariton interaction mediated by the exchange of an electron is either repulsive or attractive depending on the specific polariton branch. These mediated interactions are intrinsic to the quasiparticles and are also present in the absence of light. Importantly, they can be tuned to be more than an order of magnitude stronger than the direct polariton-polariton interaction in the absence of the electron gas, thereby providing a promising outlook for non-linear optical components. Finally, we compare our theoretical predictions with two recent experiments.
We present a scheme for obtaining stable Casimir suspension of dielectric nontouching objects immersed in a fluid, validated here in various geometries consisting of ethanol-separated dielectric spheres and semi-infinite slabs. Stability is induced b y the dispersion properties of real dielectric (monolithic) materials. A consequence of this effect is the possibility of stable configurations (clusters) of compact objects, which we illustrate via a molecular two-sphere dicluster geometry consiting of two bound spheres levitated above a gold slab. Our calculations also reveal a strong interplay between material and geometric dispersion, and this is exemplified by the qualitatively different stability behavior observed in planar versus spherical geometries.
We study the attractive interactions between rod-like charged polymers in solution that appear in the presence of multi-valence counterions. The counterions condensed to the rods exhibit both a strong transversal polarization and a longitudinal cryst alline arrangement. At short distances between the rods, the fraction of condensed counterions increases, and the majority of these occupy the region between the rods, where they minimize their repulsive interactions by arranging themselves into packing structures. The attractive interaction is strongest for multivalent counterions. Our model takes into account the hard-core volume of the condensed counterions and their angular distribution around the rods. The hard core constraint strongly suppresses longitudinal charge fluctuations.
We derive upper and lower bounds on the Casimir--Polder force between an anisotropic dipolar body and a macroscopic body separated by vacuum via algebraic properties of Maxwells equations. These bounds require only a coarse characterization of the sy stem---the material composition of the macroscopic object, the polarizability of the dipole, and any convenient partition between the two objects---to encompass all structuring possibilities. We find that the attractive Casimir--Polder force between a polarizable dipole and a uniform planar semi-infinite bulk medium always comes within 10% of the lower bound, implying that nanostructuring is of limited use for increasing attraction. In contrast, the possibility of repulsion is observed even for isotropic dipoles, and is routinely found to be several orders of magnitude larger than any known design, including recently predicted geometries involving conductors with sharp edges. Our results have ramifications for the design of surfaces to trap, suspend, or adsorb ultracold gases.
Focused laser beams allow controlling mechanical motion of objects and can serve as a tool for assembling complex micro and nano structures in space. While in a vast majority of cases small particles experience attractive gradient forces and repulsiv e radiation pressure, introduction of additional degrees of freedom into optomechanical manipulation suggests approaching new capabilities. Here we analyze optical forces acting on a high refractive index silicon sphere in a focused Gaussian beam and reveal new regimes of particles anti-trapping. Multipolar analysis allows separating an optical force into interception and recoil components, which have a completely different physical nature resulting in different mechanical actions. In particular, interplaying interception radial forces and multipolar resonances within a particle can lead to either trapping or anti-trapping scenarios, depending of the overall system parameters. At the same time, the recoil force generates a significant azimuthal component along with an angular-dependent radial force. Those contribution enable enhancing either trapping or anti-trapping regimes and also introduce bending reactions. These effects are linked to the far-field multipole interference resulting and, specifically, to its asymmetric scattering diagrams. The later approach is extremely useful, as it allows assessing the nature of optomechanical motion by observing far-field patterns. Multipolar engineering of optical forces, being quite general approach, is not necessarily linked to simple spherical shapes and paves a way to new possibilities in microfluidic applications, including sorting and micro assembly of nontrivial volumetric geometries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا