ترغب بنشر مسار تعليمي؟ اضغط هنا

Competition between local potentials and attractive particle-particle interactions in superlattices

253   0   0.0 ( 0 )
 نشر من قبل Klaus Capelle
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Naturally occuring or man-made systems displaying periodic spatial modulations of their properties on a nanoscale constitute superlattices. Such modulated structures are important both as prototypes of simple nanotechnological devices and as particular examples of emerging spatial inhomogeneity in interacting many-electron systems. Here we investigate the effect different types of modulation of the system parameters have on the ground-state energy and the charge-density distribution of the system. The superlattices are described by the inhomogeneous attractive Hubbard model, and the calculations are performed by density-functional and density-matrix renormalization group techniques. We find that modulations in local electric potentials are much more effective in shaping the systems properties than modulations in the attractive on-site interaction. This is the same conclusions we previously (Phys. Rev. B 71, 125130) obtained for repulsive interactions, suggesting that it is not an artifact of a specific state, but a general property of modulated structures.



قيم البحث

اقرأ أيضاً

We compare two crystallographic phases of the low-dimensional WP$_2$ to better understand features of electron-electron and electron-phonon interactions in topological systems. The topological $beta$-phase, a Weyl semimetal with a giant magneto-resis tance, shows a larger intensity of electronic Raman scattering compared to the topologically trivial $alpha$-phase. This intensity sharply drops for $T < T^* = 20$ K which evidences a crossover in the topological phase from marginal quasiparticles to a coherent low temperature regime. In contrast, the non-topological $alpha$-phase shows more pronounced signatures of electron-phonon interaction. Here there exist generally enlarged phonon linewidths and deviations from conventional anharmonicity in an intermediate temperature regime. These effects provide evidence for an interesting interplay of electronic correlations and electron-phonon coupling. Both interband and intraband electronic fluctuations are involved in these effects. Their dependence on symmetry as well as momentum conservation are critical ingredients to understand this interplay.
Controlling the electronic properties of interfaces has enormous scientific and technological implications and has been recently extended from semiconductors to complex oxides which host emergent ground states not present in the parent materials. The se oxide interfaces present a fundamentally new opportunity where, instead of conventional bandgap engineering, the electronic and magnetic properties can be optimized by engineering quantum many-body interactions. We utilize an integrated oxide molecular-beam epitaxy and angle-resolved photoemission spectroscopy system to synthesize and investigate the electronic structure of superlattices of the Mott insulator LaMnO3 and the band insulator SrMnO3. By digitally varying the separation between interfaces in (LaMnO3)2n/(SrMnO3)n superlattices with atomic-layer precision, we demonstrate that quantum many-body interactions are enhanced, driving the electronic states from a ferromagnetic polaronic metal to a pseudogapped insulating ground state. This work demonstrates how many-body interactions can be engineered at correlated oxide interfaces, an important prerequisite to exploiting such effects in novel electronics.
We study the attractive interactions between rod-like charged polymers in solution that appear in the presence of multi-valence counterions. The counterions condensed to the rods exhibit both a strong transversal polarization and a longitudinal cryst alline arrangement. At short distances between the rods, the fraction of condensed counterions increases, and the majority of these occupy the region between the rods, where they minimize their repulsive interactions by arranging themselves into packing structures. The attractive interaction is strongest for multivalent counterions. Our model takes into account the hard-core volume of the condensed counterions and their angular distribution around the rods. The hard core constraint strongly suppresses longitudinal charge fluctuations.
80 - Steve Allen 2000
In this thesis, I present a non-perturbative approach to the single-band attractive Hubard model which is an extension of previous work by Vilk and Tremblay on the repulsive model. Exact results are derived in the general context of functional deriva tive approaches to many-body theories. The first step of the approximation is based on a local field type ansatz. All physical quantities can be expressed as a function of double-occupancy (in addition to temperature and filling). Double-occupancy is determined without adjustable parameter by imposing the Pauli principle and a crucial sum-rule, making the first step of the approximation Two-Particle Self-Consistent. The final expression for the self-energy is obtained by calculating the low-frequency part of the exact expression with the two-particle correlation, Green function and renormalized vertex obtained in the first step of the approximation. The Mermin-Wagner theorem in two dimensions is automatically satisfied. Application of this non-perturbative many-body approach to the intermediate coupling regime shows quantitative agreement with quantum Monte Carlo calculations. Both approaches predict the existence of a pseudogap in the single-particle spectral weight. I present some physical properties, such as correlation lengths, superfluid density, and characteristic pair fluctuation energy, to highlight the origin of the pseudogap in the weak to intermediate coupling regime. These results suggest that two-dimensional systems that are described by a symmetry group larger than SO(2) could have a larger region of pseudogap behavior. High-temperature superconductors may belong to that category of systems.
A sharp feature in the charge-density excitation spectra of single-crystal MgB$_{2}$, displaying a remarkable cosine-like, periodic energy dispersion with momentum transfer ($q$) along the $c^{*}$-axis, has been observed for the first time by high-re solution non-resonant inelastic x-ray scattering (NIXS). Time-dependent density-functional theory calculations show that the physics underlying the NIXS data is strong coupling between single-particle and collective degrees of freedom, mediated by large crystal local-field effects. As a result, the small-$q$ collective mode residing in the single-particle excitation gap of the B $pi$ bands reappears periodically in higher Brillouin zones. The NIXS data thus embody a novel signature of the layered electronic structure of MgB$_{2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا