ترغب بنشر مسار تعليمي؟ اضغط هنا

Hall-effect in LuNi_2B_2C in normal and superconducting mixed states

60   0   0.0 ( 0 )
 نشر من قبل V. N. Narozhnyi
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Hall resistivity rho_{xy} of LuNi_2B_2C is negative in the normal as well as in the mixed state and has no sign reversal typical for high-T_c superconductors. A distinct nonlinearity in the rho_{xy} dependence on field H was found in the normal state for T < 40K, accompanied by a large magnetoresistance reaching +90% for mu_0H=16T at T=20K. The scaling relation rho_{xy} ~ rho_{xx}^beta (rho_{xx} is the longitudinal resistivity) was found in the mixed state, the value of beta being dependent on the degree of disorder.



قيم البحث

اقرأ أيضاً

The Hall effect in LuNi_2B_2C and YNi_2B_2C borocarbides has been investigated in normal and superconducting mixed states. The Hall resistivity rho_{xy} for both compounds is negative in the normal as well as in the mixed state and has no sign revers al below T_c typical for high-T_c superconductors. In the mixed state the behavior of both systems is quite similar. The scaling relation rho_{xy}simrho_{xx}^beta (rho_{xx} is the longitudinal resistivity) was found with beta=2.0 and 2.1 for annealed Lu- and Y-based compounds, respectively. The scaling exponent beta decreases with increasing degree of disorder and can be varied by annealing. This is attributed to a variation of the strength of flux pinning. In the normal state weakly temperature dependent Hall coefficients were observed for both compounds. A distinct nonlinearity in the rho_{xy} dependence on field H was found for LuNi_2B_2C in the normal state below 40K, accompanied by a large magnetoresistance (MR) reaching +90% for H=160kOe at T=20K. At the same time for YNi_2B_2C only linear rho_{xy}(H) dependences were observed in the normal state with an approximately three times lower MR value. This difference in the normal state behavior of the very similar Lu- and Y-based borocarbides seems to be connected with the difference in the topology of the Fermi surface of these compounds.
We study a two-band model of fermions in a 1d chain with an antisymmetric hybridization that breaks inversion symmetry. We find that for certain values of its parameters, the $sp$-chain maps formally into a $p$-wave superconducting chain, the archety pical 1d system exhibiting Majorana fermions. The eigenspectra, including the existence of zero energy modes in the topological phase, agree for both models. The end states too share several similarities in both models, such as the behavior of the localization length, the non-trivial topological index and robustness to disorder. However, we show by mapping the $s$- and $p$- fermions to two copies of Majoranas, that the excitations in the ends of a finite $sp$ chain are indeed conventional fermions though endowed with protected topological properties. Our results are obtained by a scattering approach in a semi-infinite chain with an edge defect treated within the $T$-matrix approximation. We augment the analytical results with exact numerical diagonalization that allow us to extend our results to arbitrary parameters and also to disordered systems.
High-temperature superconductivity and a wide variety of exotic superconducting states discovered in FeSe-based materials have been at the frontier of research on condensed matter physics over the past decade. Unique properties originating from the m ultiband electronic structure, strongly orbital-dependent phenomena, extremely small Fermi energy, electronic nematicity, and topological aspects give rise to many distinct and fascinating superconducting states. Here, we provide an overview of our current understanding of the superconductivity of {it bulk} FeSe-based materials, focusing on FeSe and the isovalent substituted FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-x}$Te$_{x}$. We discuss the highly nontrivial superconducting properties in FeSe, including extremely anisotropic pairing states, crossover phenomena from Bardeen--Cooper--Schrieffer (BCS) to Bose--Einstein condensation (BEC) states, a novel field-induced superconducting phase, and broken time-reversal symmetry. We also discuss the evolution of the superconducting gap function with sulfur and tellurium doping, paying particular attention to the impact of quantum critical nematic fluctuations and the topological superconductivity. FeSe-based materials provide an excellent playground to study various exotic superconducting states.
We have epitaxially grown c-axis oriented SrxLa1-xCuO2 thin films by rf sputtering on KTaO3 substrates with x = 0.12. The as-grown deposits are insulating and a series of superconducting films with various Tc(R=0) up to 26 K have been obtained by in- situ oxygen reduction. Transport measurements in the ab plane of these samples have been undertaken. We report original results on the temperature dependence of the Hall effect and on the anisotropic magnetoresistance (T > Tc). We discuss the magnitude of upper critical fields and anisotropy, the Hall effect, which presents changes of sign indicative of the existence of two types of carriers, the normal state magnetoresistance, negative in parallel magnetic field, a possible signature of spin scattering. These properties are compared to those of hole-doped cuprates, such as BiSr(La)CuO with comparable Tc.
74 - Y. Kong , O.V. Dolgov , O. Jepsen 2001
For the 40K-superconductor MgB2 we have calculated the electronic and phononic structures and the electron-phonon interaction throughout the Brillouin zone ab initio. In contrast to the isoelectronic graphite, MgB2 has holes in the bonding sigma-band s, which contribute 42 per cent to the density of states: N(0) =0.355 states/(MgB2 eV spin). The total interaction strength, lambda =0.87 and lambda,tr=0.60, is dominated by the coupling of the sigma-holes to the bond-stretching optical phonons with wavenumbers in a narrow range around 590 cm^{-1}. Like the holes, these phonons are quasi two-dimensional and have wave-vectors close to Gamma-A, where their symmetry is E. The pi-electrons contribute merely 0.25 to lambda and to lambda,tr. With Eliashberg theory we evaluate the normal-state resistivity, the density of states in the superconductor, and the B-isotope effect on Tc and Delta0, and find excellent agreement with experiments, when available. Tc=40 K is reproduced with mu*=0.10 and 2Delta0/kB Tc=3.9. MgB2 thus seems to be an intermediate-coupling e-ph pairing s-wave superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا