ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-phonon interaction in the normal and superconducting states of MgB2

75   0   0.0 ( 0 )
 نشر من قبل Ove Jepsen
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the 40K-superconductor MgB2 we have calculated the electronic and phononic structures and the electron-phonon interaction throughout the Brillouin zone ab initio. In contrast to the isoelectronic graphite, MgB2 has holes in the bonding sigma-bands, which contribute 42 per cent to the density of states: N(0) =0.355 states/(MgB2 eV spin). The total interaction strength, lambda =0.87 and lambda,tr=0.60, is dominated by the coupling of the sigma-holes to the bond-stretching optical phonons with wavenumbers in a narrow range around 590 cm^{-1}. Like the holes, these phonons are quasi two-dimensional and have wave-vectors close to Gamma-A, where their symmetry is E. The pi-electrons contribute merely 0.25 to lambda and to lambda,tr. With Eliashberg theory we evaluate the normal-state resistivity, the density of states in the superconductor, and the B-isotope effect on Tc and Delta0, and find excellent agreement with experiments, when available. Tc=40 K is reproduced with mu*=0.10 and 2Delta0/kB Tc=3.9. MgB2 thus seems to be an intermediate-coupling e-ph pairing s-wave superconductor.

قيم البحث

اقرأ أيضاً

We propose a microscopic theory of interaction of long wave molecular phonons with electrons in fullerides in the presence of disorder. Phonon relaxation rate and frequency renormalization are discussed. Finite electronic bandwidth reduces phonon rel axation rate at $q=0$. Electron-phonon coupling constants with molecular modes in fullerides are estimated. The results are in good agreement with photoemission experiments.
70 - N. L. Bobrov 2019
The experimentally observed nonlinearities of the current-voltage characteristics (CVCs) of tantalum-based point homo- and hetero- contacts in both normal and superconducting states related to electron-phonon interaction (EPI) were analyzed. It was t aken into account that additional nonlinearity of CVCs arising upon contact transition to the superconducting state (superconducting spectral component) is formed not only near the constriction in the region roughly equal to the contact diameter (as is the case for the normal state, and as predicted theoretically for the superconducting state), but also in a markedly larger region that is about the size of the coherence length. In this case, a considerable role in the formation of this superconducting component is played by nonequilibrium phonons with low group velocity, which account for the experimentally observed sharpening of the phonon peaks in the EPI spectra (the second derivatives of the CVCs) during the superconducting transition of the contacts, instead of the theoretically expected peak broadening (spreading), and for the increase in the superconducting contribution to the point contact spectrum in the low and medium energy regions. The high-energy part of the EPI spectrum changes much less significantly during the superconducting transition, which is attributable to suppression of the excess contact current by nonequilibrium quasi-particles. A detailed procedure was proposed for the recovery of the EPI spectral function from the point contact spectrum contribution (the second derivative of the CVC) that arises during the superconducting transition of one or both contacting metals.
77 - N. L. Bobrov 2021
The recovering procedure of the electron-phonon interaction (EPI) functions from the additional nonlinearities of the current-voltage curve ($I-V$ curve) of point contacts associated with an excess current is considered. The approach proposed takes i nto account both inelastic scattering, which causes suppression of the excess current in the reabsorption of nonequilibrium phonons by electrons undergoing Andreev reflection (Andreev electrons), and elastic processes associated with the electron-phonon renormalization of the energy spectrum in a superconductor. The results obtained are systematically expounded for both the ballistic contacts, wherein the second derivatives of the $I-V$ curve in the normal state are proportional to the EPI functions, and inhomogeneous contacts (with dirty constrictions and clean banks), whose second derivatives in the normal state are either free of phonon singularities or weakly pronounced.
118 - Jiang-Tao Liu 2016
The effect of the resonance of electron scattering energy difference and phonon energy on the electron-phonon-electron interaction (EPEI) is studied. Results show that the resonance of electron transition energy and phonon energy can enhance EPEI by a magnitude of 1 to 2. Moreover, the anisotropic S-wave electron or dx2-y2 electron can enhance resonance EPEI, and the self-energy correction of the electron will weaken resonance EPEI. Particularly, the asymmetrical spin-flip scattering process in k space can reduce the effect of electronic self-energy to enhance resonance EPEI
Electron-phonon interaction plays an important role in metals and can lead to superconductivity and other instabilities. Previous theoretical studies on superconductivity are largely based on the Migdal-Eliashberg theory, which neglects all the verte x corrections to electron-phonon coupling and breaks down in many unconventional superconductors. Here, we go beyond the Migdal-Eliashberg approximation and develop a nonperturbative Dyson-Schwinger equation approach to deal with the superconducting transition. Remarkably, we take into account all the vertex corrections by solving two coupled Ward-Takahashi identities derived from two global U(1) symmetries and rigorously prove that the fully renormalized electron propagator satisfies a self-closed integral equation that is directly amenable to numerical computations. Our approach works equally well in the weak and strong coupling regimes and provides an efficient method to determine superconducting $T_c$ and other quantities. As an application, our approach is used to investigate the high-$T_c$ superconductivity in one-unit-cell FeSe/SrTiO$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا