ﻻ يوجد ملخص باللغة العربية
The Hall effect in LuNi_2B_2C and YNi_2B_2C borocarbides has been investigated in normal and superconducting mixed states. The Hall resistivity rho_{xy} for both compounds is negative in the normal as well as in the mixed state and has no sign reversal below T_c typical for high-T_c superconductors. In the mixed state the behavior of both systems is quite similar. The scaling relation rho_{xy}simrho_{xx}^beta (rho_{xx} is the longitudinal resistivity) was found with beta=2.0 and 2.1 for annealed Lu- and Y-based compounds, respectively. The scaling exponent beta decreases with increasing degree of disorder and can be varied by annealing. This is attributed to a variation of the strength of flux pinning. In the normal state weakly temperature dependent Hall coefficients were observed for both compounds. A distinct nonlinearity in the rho_{xy} dependence on field H was found for LuNi_2B_2C in the normal state below 40K, accompanied by a large magnetoresistance (MR) reaching +90% for H=160kOe at T=20K. At the same time for YNi_2B_2C only linear rho_{xy}(H) dependences were observed in the normal state with an approximately three times lower MR value. This difference in the normal state behavior of the very similar Lu- and Y-based borocarbides seems to be connected with the difference in the topology of the Fermi surface of these compounds.
The Hall resistivity rho_{xy} of LuNi_2B_2C is negative in the normal as well as in the mixed state and has no sign reversal typical for high-T_c superconductors. A distinct nonlinearity in the rho_{xy} dependence on field H was found in the normal s
The electronic structure, optical and x-ray absorption spectra, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface, phonon spectra, electron-phonon Eliashberg and transport spectral functions, temperature depend
The longitudinal electrical resistivity and the transverse Hall resistivity of CeFeAsO are simultaneously measured up to a magnetic field of 45T using the facilities of pulsed magnetic field at Los Alamos. Distinct behaviour is observed in both the m
We propose a superlattice model to describe superconductivity in layered materials, such as the borocarbide families with the chemical formulae $RT_2$B$_2$C and $RT$BC, with $R$ being (essentially) a rare earth, and $T$ a transition metal. We assume
The discovery of iron-based superconductors caused great excitement, as they were the second high-$T_c$ materials after cuprates. Because of a peculiar topological feature of the electronic band structure, investigators quickly realized that the anti