ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of Long Range Antiferromagnetic Order by Nonmagnetic Impurities in the Hubbard Model

63   0   0.0 ( 0 )
 نشر من قبل Martin Ulmke
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-dimensional Hubbard model with a bimodal distribution of on-site interactions, P(U_i) = (1-f)delta(U_i-U) + fdelta(U_i), is studied using a finite temperature quantum Monte Carlo technique and dynamical mean-field theory. We find long range antiferromagnetic order off half-filling is stabilized by the disorder, due to localization of the dopants on the U=0 sites. Whereas in the clean model there is a single gap at n=1, for nonzero f we find the compressibility and density of states exhibit gaps at two separate fillings.

قيم البحث

اقرأ أيضاً

The phase transition in the compound LiVGe2O6 has been proposed as a unique example of a spin-Peierls transition in an S=1 antiferromagnetic chain. We report neutron and x-ray diffraction measurements of LiVGe2O6 above and below the phase transition at T=24 K. No evidence is seen for any structural distortion associated with the transition. The neutron results indicate that the low temperature state is antiferromagnetic, driven by ferromagnetic interchain couplings.
Photoinduced dynamics in an excitonic insulator is studied theoretically by using a two-orbital Hubbard model on the square lattice where the excitonic phase in the ground state is characterized by the BCS-BEC crossover as a function of the interorbi tal Coulomb interaction. We consider the case where the order has a wave vector $Q=(0,0)$ and photoexcitation is introduced by a dipole transition. Within the mean-field approximation, we show that the excitonic order can be enhanced by the photoexcitation when the system is initially in the BEC regime of the excitonic phase, whereas it is reduced if the system is initially in the BCS regime. The origin of this difference is discussed from behaviors of momentum distribution functions and momentum-dependent excitonic pair condensation. In particular, we show that the phases of the excitonic pair condensation have an important role in determining whether the excitonic order is enhanced or not.
69 - M.Minakata , Y.Maeno 2001
We report unusual effects of nonmagnetic impurities on the spin-triplet superconductor Sr2RuO4. The substitution of nonmagnetic Ti4+ for Ru4+ induces localized-moment magnetism characterized by unexpected Ising anisotropy with the easy axis along the interlayer c direction. Furthermore, for x(Ti) > 0.03 magnetic ordering occurs in the metallic state with the remnant magnetization along the c-axis. We argue that the localized moments are induced in the Ru4+ and/or oxygen ions surrounding Ti4+ and that the ordering is due to their interaction mediated by itinerant Ru-4d electrons with strong spin fluctuations.
We investigate the real-time dynamics of the half-filled one-dimensional extended Hubbard model in the strong-coupling regime, when driven by a transient laser pulse. Starting from a wide regime displaying a charge-density wave in equilibrium, a robu st photoinduced in-gap state appears in the optical conductivity, depending on the parameters of the pulse. Here, by tuning its conditions, we maximize the overlap of the time-evolving wavefunction with excited states displaying the elusive bond-ordered wave of this model. Finally, we make a clear connection between the emergence of this order and the formation of the aforementioned in-gap state, suggesting the potential observation of purely electronic (i.e., not associated with a Peierls instability) bond-ordered waves in experiments involving molecular crystals.
We show how the onset of a non-Slater antiferromagnetic ordering in a correlated material can be detected by optical spectroscopy. Using dynamical mean-field theory we identify two distinctive features: The antiferromagnetic ordering is associated wi th an enhanced spectral weight above the optical gap, and well separated spin-polaron peaks emerge in the optical spectrum. Both features are indeed observed in LaSrMnO_4 [Gossling et al., Phys. Rev. B 77, 035109 (2008)]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا