ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise-assisted Mound Coarsening in Epitaxial Growth

96   0   0.0 ( 0 )
 نشر من قبل Lei-Han Tang
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose deposition noise to be an important factor in unstable epitaxial growth of thin films. Our analysis yields a geometrical relation H=(RWL)^2 between the typical mound height W, mound size L, and the film thickness H. Simulations of realistic systems show that the parameter R is a characteristic of the growth conditions, and generally lies in the range 0.2-0.7. The constancy of R in late-stage coarsening yields a scaling relation between the coarsening exponent 1/z and the mound height exponent beta which, in the case of saturated mound slope, gives beta = 1/z = 1/4.

قيم البحث

اقرأ أيضاً

We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO_(1-x)N_x f ilms with good control over the films nitrogen concentration. In-situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu3+ 4f6 and a corresponding decrease in the number of Eu2+ 4f7, indicating that nitrogen is being incorporated in its 3- oxidation state. While small amounts of Eu3+ in over-oxidized Eu_(1-delta)O thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu3+ in EuO_(1-x)N_x still allows the ferromagnetic phase to exist with an unaffected Tc, thus providing an ideal model system to study the interplay between the magnetic f7 (J=7/2) and the non-magnetic f6 (J=0) states close to the Fermi level.
The interest in Fe-chalcogenide unconventional superconductors is intense after the critical temperature of FeSe was reported enhanced by more than one order of magnitude in the monolayer limit at the interface to an insulating oxide substrate. In he terostructures comprising interfaces of FeSe with topological insulators, additional interesting physical phenomena is predicted to arise e.g. in form of {it topological superconductivity}. So far superconductive properties of Fe-chalcogenide monolayers were mostly studied by local scanning tunneling spectroscopy experiments, which can detect pseudo-gaps in the density of states as an indicator for Cooper pairing. Direct macroscopic transport properties which can prove or falsify a superconducting phase were rarely reported due to the difficulty to grow films with homogeneous material properties. Here we report on a promising growth method to fabricate continuous carpets of monolayer thick FeSe on molecular beam epitaxy grown Bi$_2$Se$_3$ topological insulator thin films. In contrast to previous works using atomically flat cleaved bulk Bi$_2$Se$_3$ crystal surfaces we observe a strong influence of the high step-edge density (terrace width about 10~nm) on MBE-grown Bi$_2$Se$_3$ substrates, which significantly promotes the growth of coalescing FeSe domains with small tetragonal crystal distortion without compromising the underlying Bi$_2$Se$_3$ crystal structure.
An in vacuo thermal desorption process has been accomplished to form epitaxial graphene (EG) on 4H- and 6H-SiC substrates using a commercial chemical vapor deposition reactor. Correlation of growth conditions and the morphology and electrical propert ies of EG are described. Raman spectra of EG on Si-face samples were dominated by monolayer thickness. This approach was used to grow EG on 50 mm SiC wafers that were subsequently fabricated into field effect transistors with fmax of 14 GHz.
We demonstrate hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Compared with the conventional thermal decomposition technique, the size of the growth domain by this method is substantially increased and the thickn ess variation is reduced. Based on the morphology of epitaxial graphene, the role of hydrogen is revealed. It is found that hydrogen acts as a carbon etchant. It suppresses the defect formation and nucleation of graphene. It also improves the kinetics of carbon atoms via hydrocarbon species. These effects lead to increase of the domain size and the structure quality. The consequent capping effect results in smooth surface morphology and suppression of multilayer growth. Our method provides a viable route to fine tune the growth kinetics of epitaxial graphene on SiC.
A detailed review of the literature for the last 5-10 years on epitaxial growth of graphene is presented. Both experimental and theoretical aspects related to growth on transition metals and on silicon carbide are thoroughly reviewed. Thermodynamic a nd kinetic aspects of growth on all these materials, where possible, are discussed. To make this text useful for a wider audience, a range of important experimental techniques that have been used over the last decade to grow (e.g. CVD, TPG and segregation) and characterize (STM, LEEM, etc.) graphene are reviewed, and a critical survey of the most important theoretical techniques is given. Finally, we critically discuss various unsolved problems related to growth and its mechanism which we believe require proper attention in future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا