ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial Graphene Growth on SiC Wafers

230   0   0.0 ( 0 )
 نشر من قبل Joseph Tedesco
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An in vacuo thermal desorption process has been accomplished to form epitaxial graphene (EG) on 4H- and 6H-SiC substrates using a commercial chemical vapor deposition reactor. Correlation of growth conditions and the morphology and electrical properties of EG are described. Raman spectra of EG on Si-face samples were dominated by monolayer thickness. This approach was used to grow EG on 50 mm SiC wafers that were subsequently fabricated into field effect transistors with fmax of 14 GHz.

قيم البحث

اقرأ أيضاً

Growth of epitaxial graphene on the C-face of SiC has been investigated. Using a confinement controlled sublimation (CCS) method, we have achieved well controlled growth and been able to observe propagation of uniform monolayer graphene. Surface patt erns uncover two important aspects of the growth, i.e. carbon diffusion and stoichiometric requirement. Moreover, a new stepdown growth mode has been discovered. Via this mode, monolayer graphene domains can have an area of hundreds of square micrometers, while, most importantly, step bunching is avoided and the initial uniformly stepped SiC surface is preserved. The stepdown growth provides a possible route towards uniform epitaxial graphene in wafer size without compromising the initial flat surface morphology of SiC.
Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense r esearch, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100 {mu}m. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen.
157 - M. Sprinkle , J. Hicks , A. Tejeda 2010
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are di scussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.
In recent years, graphene growth optimization has been one of the key routes towards large-scale, high-quality graphene production. We have measured in-situ residual gas content during epitaxial graphene growth on silicon carbide (SiC) to find detrim ental factors of epitaxial graphene growth. The growth conditions in high vacuum and purified argon are compared. The grown epitaxial graphene is studied by Raman scattering mapping and mechanical strain, charge density, number of graphene layers and graphene grain size are evaluated. Charge density and carrier mobility has been studied by Hall effect measurements in van der Pauw configuration. We have identified a major role of chemical reaction of carbon and residual water. The rate of the reaction is lowered when purified argon is used. We also show, that according to time varying gas content, it is preferable to grow graphene at higher temperatures and shorter times. Other sources of growth environment contamination are also discussed. The reaction of water and carbon is discussed to be one of the factors increasing number of defects in graphene. The importance of purified argon and its sufficient flow rate is concluded to be important for high-quality graphene growth as it reduces the rate of undesired chemical reactions and provides more stable and defined growth ambient.
Epitaxial graphene layers were grown on the C-face of 4H- and 6H-SiC using an argon-mediated growth process. Variations in growth temperature and pressure were found to dramatically affect the morphological properties of the layers. The presence of a rgon during growth slowed the rate of graphene formation on the C-face and led to the observation of islanding. The similarity in the morphology of the islands and continuous films indicated that island nucleation and coalescence is the growth mechanism for C-face graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا