ﻻ يوجد ملخص باللغة العربية
We discuss static and dynamic fluctuations of domain walls separating areas of constant but different slopes in steady-state configurations of crystalline surfaces both by an analytic treatment of the appropriate Langevin equation and by numerical simulations. In contrast to other situations that describe the dynamics in Ising-like systems such as models A and B, we find that the dynamic exponent z=2 that governs the domain wall relaxation function is not equal to the inverse of the exponent n=1/4 that describes the coarsening process that leads to the steady state.
The newly discovered iron pnictide superconductors apparently present an unusual case of interband-channel pairing superconductivity. Here we show that, in the limit where the pairing occurs within the interband channel, several surprising effects oc
We argue that a strict relation exists between two in principle unrelated quantities: The size of the growing domains in a coarsening system, and the kinetic roughening of an interface. This relation is confirmed by extensive simulations of the Ising
We study the purely relaxational dynamics (model A) at criticality in three-dimensional disordered Ising systems whose static critical behaviour belongs to the randomly diluted Ising universality class. We consider the site-diluted and bond-diluted I
We investigate the nonequilibrium coarsening dynamics in two-dimensional overdamped superconducting arrays under zero external current, where ohmic dissipation occurs on junctions between superconducting islands through uniform resistance. The nonequ
A mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the Lifshitz-Slyozov-Wagner theory of Ostwald ripening in two-phase systems