ترغب بنشر مسار تعليمي؟ اضغط هنا

A Mean-Field Theory for Coarsening Faceted Surfaces

390   0   0.0 ( 0 )
 نشر من قبل Scott Norris
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the Lifshitz-Slyozov-Wagner theory of Ostwald ripening in two-phase systems [1-3], but the mechanism of coarsening in faceted surfaces requires the addition of convolution terms recalling the work of Smoluchowski [4] and Schumann [5] on coalescence. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a framework for the investigation of faceted surfaces evolving under arbitrary dynamics. [1] I. Lifshitz, V. Slezov, Soviet Physics JETP 38 (1959) 331-339. [2] I. Lifshitz, V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50. [3] C. Wagner, Elektrochemie 65 (1961) 581-591. [4] M. von Smoluchowski, Physikalische Zeitschrift 17 (1916) 557-571. [5] T. Schumann, J. Roy. Met. Soc. 66 (1940) 195-207.



قيم البحث

اقرأ أيضاً

We fully generalize a previously-developed computational geometry tool [1] to perform large-scale simulations of arbitrary two-dimensional faceted surfaces $z = h(x,y)$. Our method uses a three-component facet/edge/junction storage model, which by na turally mirroring the intrinsic surface structure allows both rapid simulation and easy extraction of geometrical statistics. The bulk of this paper is a comprehensive treatment of topological events, which are detected and performed explicitly. In addition, we also give a careful analysis of the subtle pitfalls associated with time-stepping schemes for systems with topological changes. The method is demonstrated using a simple facet dynamics on surfaces with three different symmetries. Appendices detail the reconnection of holes left by facet removal and a strategy for dealing with the inherent kinematic non-uniqueness displayed by several topological events. [1] S.A. Norris and S.J. Watson, Acta Mat. 55 (2007) p. 6444
We derive mean-field equations for a general class of ferromagnetic spin systems with an explicit error bound in finite volumes. The proof is based on a link between the mean-field equation and the free convolution formalism of random matrix theory, which we exploit in terms of a dynamical method. We present three sample applications of our results to Ka{c} interactions, randomly diluted models, and models with an asymptotically vanishing external field.
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sa nov-type large deviations principles for the total spin and the empirical spin distribution and demonstrate a second-order phase transition in the Gibbs measures. We also study the asymptotics of the total spin throughout the phase transition using Steins method, proving central limit theorems in the sub- and supercritical phases and a nonnormal limit theorem at the critical temperature.
We study mean-field classical $N$-vector models, for integers $Nge 2$. We use the theory of large deviations and Steins method to study the total spin and its typical behavior, specifically obtaining non-normal limit theorems at the critical temperat ures and central limit theorems away from criticality. Important special cases of these models are the XY ($N=2$) model of superconductors, the Heisenberg ($N=3$) model (previously studied in cite{KM} but with a correction to the critical distribution here), and the Toy ($N=4$) model of the Higgs sector in particle physics.
We present a new proof of the convergence of the N-particle Schroedinger dynamics for bosons towards the dynamics generated by the Hartree equation in the mean-field limit. For a restricted class of two-body interactions, we obtain convergence estima tes uniform in the Planck constant , up to an exponentially small remainder. For h=0, the classical dynamics in the mean-field limit is given by the Vlasov equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا