ﻻ يوجد ملخص باللغة العربية
We investigate the nonequilibrium coarsening dynamics in two-dimensional overdamped superconducting arrays under zero external current, where ohmic dissipation occurs on junctions between superconducting islands through uniform resistance. The nonequilibrium relaxation of the unfrustrated array and also of the fully frustrated array, quenched to low temperature ordered states or quasi-ordered ones, is dominated by characteristic features of coarsening processes via decay of point and line defects, respectively. In the case of unfrustrated arrays, it is argued that due to finiteness of the friction constant for a vortex (in the limit of large spatial extent of the vortex), the typical length scale grows as $ell_s sim t^{1/2}$ accompanied by the number of point vortices decaying as $N_v sim 1/t $. This is in contrast with the case that dominant dissipation occurs between each island and the substrate, where the friction constant diverges logarithmically and the length scale exhibits diffusive growth with a logarithmic correction term. We perform extensive numerical simulations, to obtain results in reasonable agreement. In the case of fully frustrated arrays, the domain growth of Ising-like chiral order exhibits the low-temperature behavior $ell_q sim t^{1/z_q}$, with the growth exponent $1/z_q$ apparently showing a strong temperature dependence in the low-temperature limit.
Equilibrium and non-equilibrium relaxation behaviors of two-dimensional superconducting arrays are investigated via numerical simulations at low temperatures in the presence of incommensurate transverse magnetic fields, with frustration parameter f=
Superconducting qubits are a leading candidate for quantum computing but display temporal fluctuations in their energy relaxation times T1. This introduces instabilities in multi-qubit device performance. Furthermore, autocorrelation in these time fl
We discuss static and dynamic fluctuations of domain walls separating areas of constant but different slopes in steady-state configurations of crystalline surfaces both by an analytic treatment of the appropriate Langevin equation and by numerical si
We investigate the coarsening dynamics in the two-dimensional Hamiltonian XY model on a square lattice, beginning with a random state with a specified potential energy and zero kinetic energy. Coarsening of the system proceeds via an increase in the
Coarsening dynamics theory has successfully described the equilibration of a broad class of systems.By studying the relaxation of a periodic array of microcondensates immersed in a Fermi gas which can mediate long-range spin interactions to simulate