ﻻ يوجد ملخص باللغة العربية
We address the problem of separating the short-distance, high-energy physics of cyclotron motion from the long- distance, low-energy physics within the Lowest Landau Level in field theoretic treatments of the Fractional Quantum Hall Effect. We illustrate our method for the case $ u =1/2$. By a sequence of field transformations we go from electrons to fermions that carry flux tubes of thickness $l_o$ (cyclotron radius) and couple to harmonic oscillators corresponding to magnetoplasmons. The fermions keep track of the low energy physics while the oscillators describe the Landau level, cyclotron currents etc. From this starting point we are able to get Jain and Rezayi-Read wavefunctions, and many subsequent modifications of the RPA analysis of Halperin, Lee and Read.
We have measured the Hall-plateau width and the activation energy of the bilayer quantum Hall (BLQH) states at the Landau-level filling factor $ u=1$ and 2 by tilting the sample and simultaneously changing the electron density in each quantum well. T
We observe fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor $ u=1/2$ in two-dimensional hole systems confined to GaAs quantum wells of width 30 to 50 nm and having bilayer-like charge distributions. The $ u=1/
We measured the magnetoresistance of bilayer quantum Hall (QH) effects at the fractional filling factor $ u =2/3$ by changing the total electron density and the density difference between two layers. Three different QH states were separated by two ty
We observe geometric resonance features of composite fermions on the flanks of the even denominator { u} = 1/2 fractional quantum Hall state in high-mobility two-dimensional electron and hole systems confined to wide GaAs quantum wells and subjected
The nature of the fractional quantum Hall effect at $ u=1/2$ observed in wide quantum wells almost three decades ago is still under debate. Previous studies have investigated it by the variational Monte Carlo method, which makes the assumption that t