ﻻ يوجد ملخص باللغة العربية
Quadratic-response theory is shown to provide a conceptually simple but accurate approximation for the self-consistent one-electron potential of semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs and InGaAs/InP (001) superlattices using the local-density approximation to density-functional theory and norm-conserving pseudopotentials without spin-orbit coupling. When the reference crystal is chosen to be the virtual-crystal average of the two bulk constituents, the absolute error in the quadratic-response potential for Gamma(15) valence electrons is about 2 meV for GaAs/AlAs and 5 meV for InGaAs/InP. Low-order multipole expansions of the electron density and potential response are shown to be accurate throughout a small neighborhood of each reciprocal lattice vector, thus providing a further simplification that is confirmed to be valid for slowly varying envelope functions. Although the linear response is about an order of magnitude larger than the quadratic response, the quadratic terms are important both quantitatively (if an accuracy of better than a few tens of meV is desired) and qualitatively (due to their different symmetry and long-range dipole effects).
This paper examines the properties of the self-energy operator in lattice-matched semiconductor heterostructures, focusing on nonanalytic behavior at small values of the crystal momentum, which gives rise to long-range Coulomb potentials. A nonlinear
Highly accurate experimental structure factors of silicon are available in the literature, and these provide the ideal test for any emph{ab initio} method for the construction of the all-electron charge density. In a recent paper [J. R. Trail and D.
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both f
At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipien
We calculate the Overhauser frequency shifts in semiconductor nanostructures resulting from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins. The frequency shifts depend on the electronic local density of states and