ترغب بنشر مسار تعليمي؟ اضغط هنا

Overhauser frequency shifts in semiconductor nanostructures

129   0   0.0 ( 0 )
 نشر من قبل Ionel Tifrea
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the Overhauser frequency shifts in semiconductor nanostructures resulting from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins. The frequency shifts depend on the electronic local density of states and spin polarization as well as the electronic and nuclear spin relaxation mechanisms. Unlike previous calculations, our method accounts for the electron confinement in low dimensional semiconductor nanostructures, resulting in both nuclear spin polarizations and Overhauser shifts that are strongly dependent on position. Our results explain previously puzzling measurements of Overhauser shifts in an Al$_x$Ga$_{1-x}$As parabolic quantum well by showing the connection between the electron spin lifetime and the frequency shifts.



قيم البحث

اقرأ أيضاً

We investigate the dynamic nuclear polarization from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins coupled to them in semiconductor nanostructures. We derive the time and position dependence of the induced nuclea r spin polarization and dipolar magnetic fields. In GaAs/AlGaAs parabolic quantum wells the nuclear spin polarization can be as high as 80% and the induced nuclear magnetic fields can approach a few gauss with an associated nuclear resonance shift of the order of kHz when the electronic system is 100% spin polarized. These fields and shifts can be tuned using small electric fields. We discuss the implications of such control for optical nuclear magnetic resonance experiments in low-dimensional semiconductor nanostructures.
147 - R. Ledru , S. Pleutin , B. Grouiez 2012
The complex admittance of metal/oxide/pentacene thin film junctions is investigated under ambient conditions. At low frequencies, a contribution attributed to proton diffusion through the oxide is seen. This diffusion is shown to be anomalous and is believed to be also at the origin of the bias stress effect observed in organic field effect transistors. At higher frequencies, two dipolar contributions are evidenced, attributed to defects located one at the organic/oxide interface or within the organic, and the other in the bulk of the oxide. These two dipolar responses show different dynamic properties that manifest themselves in the admittance in the form of a Debye contribution for the defects located in the oxide, and of a Cole-Cole contribution for the defects related to the organic.
Understanding the electronic structure of semiconductor nanostructures is not complete without a detailed description of their corresponding spin-related properties. Here we explore the response of the shell structure of InAs self-assembled quantum d ots to magnetic fields oriented in several directions, allowing the mapping of the g-tensor modulus for the s and p shells. We found that the g-tensors for the s and p shells show a very different behavior. The s-state in being more localized allows the probing of the confining potential details by sweeping the magnetic field orientation from the growth direction towards the in-plane direction. As for the p-state, we found that the g-tensor modulus is closer to that of the surrounding GaAs, consistent with a larger delocalization. These results reveal further details of the confining potentials of self-assembled quantum dots that have not yet been probed, in addition to the assessment of the g-tensor, which is of fundamental importance for the implementation of spin related applications.
131 - John H. Reina 2000
A major question for condensed matter physics is whether a solid-state quantum computer can ever be built. Here we discuss two different schemes for quantum information processing using semiconductor nanostructures. First, we show how optically drive n coupled quantum dots can be used to prepare maximally entangled Bell and Greenberger-Horne-Zeilinger states by varying the strength and duration of selective light pulses. The setup allows us to perform an all-optical generation of the quantum teleportation of an excitonic state in an array of coupled quantum dots. Second, we give a proposal for reliable implementation of quantum logic gates and long decoherence times in a quantum dots system based on nuclear magnetic resonance (NMR), where the nuclear resonance is controlled by the ground state transitions of few-electron QDs in an external magnetic field. The dynamical evolution of these systems in the presence of environmentally-induced decoherence effects is also discussed.
235 - J. M. Pruneda 2011
First-principles calculations of substitutional defects and vacancies are performed for zigzag-edged hybrid C/BN nanosheets and nanotubes which recently have been proposed to exhibit half-metallic properties. The formation energies show that defects form preferentially at the interfaces between graphene and BN domains rather than in the middle of these domains, and that substitutional defects dominate over vacancies. Chemical control can be used to favor localization of defects at C- B interfaces (nitrogen-rich environment) or C-N interfaces (nitrogen-poor environment). Although large defect concentrations have been considered here (106 cm-1), half-metallic properties can subsist when defects are localized at the C-B interface and for negatively charged defects localized at the C- N interface, hence the promising magnetic properties theoretically predicted for these zigzag-edged nanointerfaces might not be destroyed by point defects if these are conveniently engineered during synthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا