ﻻ يوجد ملخص باللغة العربية
Highly accurate experimental structure factors of silicon are available in the literature, and these provide the ideal test for any emph{ab initio} method for the construction of the all-electron charge density. In a recent paper [J. R. Trail and D. M. Bird, Phys. Rev. B {bf 60}, 7863 (1999)] a method has been developed for obtaining an accurate all-electron charge density from a first principles pseudopotential calculation by reconstructing the core region of an atom of choice. Here this method is applied to bulk silicon, and structure factors are derived and compared with experimental and Full-potential Linear Augmented Plane Wave results (FLAPW). We also compare with the result of assuming the core region is spherically symmetric, and with the result of constructing a charge density from the pseudo-valence density + frozen core electrons. Neither of these approximations provide accurate charge densities. The aspherical reconstruction is found to be as accurate as FLAPW results, and reproduces the residual error between the FLAPW and experimental results.
The structure and properties of vacancies in a 2 nm Si nano-crystal are studied using a real space density functional theory/pseudopotential method. It is observed that a vacancys electronic properties and energy of formation are directly related to
Quadratic-response theory is shown to provide a conceptually simple but accurate approximation for the self-consistent one-electron potential of semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs and InGaAs/InP (001) superla
A new method is presented for obtaining all-electron results from a pseudopotential calculation. This is achieved by carrying out a localised calculation in the region of an atomic nucleus using the embedding potential method of Inglesfield [J.Phys.
Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, wh
We discuss an efficiency of various band structure algorithms in determining the Fermi surface (FS) of the paramagnetic ErGa3. The linear muffin-tin orbital (LMTO) in the atomic sphere approximation (ASA) method and three full potential (FP) codes: F