ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultracold Fermi gases in the BEC-BCS crossover: a review from the Innsbruck perspective

98   0   0.0 ( 0 )
 نشر من قبل Rudolf Grimm
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rudolf Grimm




اسأل ChatGPT حول البحث

A review of recent BEC-BCS crossover experiments in ultracold Fermi gases is given with particular emphasis on the work performed with lithium-6 at the University of Innsbruck.

قيم البحث

اقرأ أيضاً

We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of external magnetic field. We investigate the dynamics of the condensate order parameter and pair wavefunction for a range of field strengths. When the abrupt jump is sufficient to span the BCS to BEC crossover, we show that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance channel dominated resonances observed in the 40K and 6Li. Focusing on material parameters tailored to the 40K Feshbach resonance system at 202.1 gauss, we comment on the integrity of the fast sweet projection technique as a vehicle to explore the condensed phase in the crossover region
We report on experimental studies on the collective behavior of a strongly interacting Fermi gas with tunable interactions and variable temperature. A scissors mode excitation in an elliptical trap is used to characterize the dynamics of the quantum gas in terms of hydrodynamic or near-collisionless behavior. We obtain a crossover phase diagram for collisional properties, showing a large region where a non-superfluid strongly interacting gas shows hydrodynamic behavior. In a narrow interaction regime on the BCS side of the crossover, we find a novel temperature-dependent damping peak, suggesting a relation to the superfluid phase transition.
We perform a variational quantum Monte Carlo simulation of the transition from a Bardeen-Cooper-Schrieffer superfluid (BCS) to a Bose-Einstein condensate (BEC) at zero temperature. The model Hamiltonian involves an attractive short range two body int eraction and the atoms number $2N =330$ is chosen so that, in the non-interacting limit, the ground state function corresponds to a closed shell configuration. The system is then characterized by the s-wave scattering length $a$ of the two-particle collisions in the gas, which is varied from negative to positive values, and the Fermi wave number $k_F$. Based on an extensive analysis of the s-wave two-body problem, one parameter variational many-body wave functions are proposed to describe the ground state of the interacting Fermi gas from BCS to BEC states. We exploit properties of antisymmetrized many-body functions to develop efficient techniques that permit variational calculations for a large number of particles. It is shown that a virial relation between the energy per particle and the trapping energy is approximately valid for $-0.1<1/k_Fa<3.4$. The influence of the harmonic trap and the interaction potential as exhibited in two-body correlation functions is also analyzed.
We present an overview of our recent measurements on the crossover from a Bose-Einstein condensate of molecules to a Bardeen-Cooper-Schrieffer superfluid. The experiments are performed on a two-component spin-mixture of $^6$Li atoms, where a Fesh-bac h resonance serves as the experimental key to tune the s-wave scattering length and thus to explore the various interaction regimes. In the BEC-BCS crossover, we have characterized the interaction energy by measuring the size of the trapped gas, we have studied collective excitation modes, and we have observed the pairing gap. Our observations provide strong evidence for superfluidity in the strongly interacting Fermi gas.
We study the free expansion of a dilute two-component Fermi gas with attractive interspecies interaction in the BCS-BEC crossover. We apply a time-dependent parameter-free density-functional theory by using two choices of the equation of state: an an alytic formula based on Monte Carlo data and the mean-field equation of state resulting from the extended BCS equations. The calculated axial and transverse radii and the aspect ratio of the expanding cloud are compared to experimental data on vapors of ^6Li atoms. Remarkably, the mean-field theory shows a better agreement with the experiments than the theory based on the Monte Carlo equation of state. Both theories predict a measurable dependence of the aspect ratio on expansion time and on scattering length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا