ﻻ يوجد ملخص باللغة العربية
We present an overview of our recent measurements on the crossover from a Bose-Einstein condensate of molecules to a Bardeen-Cooper-Schrieffer superfluid. The experiments are performed on a two-component spin-mixture of $^6$Li atoms, where a Fesh-bach resonance serves as the experimental key to tune the s-wave scattering length and thus to explore the various interaction regimes. In the BEC-BCS crossover, we have characterized the interaction energy by measuring the size of the trapped gas, we have studied collective excitation modes, and we have observed the pairing gap. Our observations provide strong evidence for superfluidity in the strongly interacting Fermi gas.
We investigate the photoemission-type spectrum in a cold Fermi gas which was recently measured by JILA group [J. T. Stewart {it et al}., Nature textbf{454}, 744 (2008)]. This quantity gives us very useful information about single-particle properties
We theoretically investigate excitation properties in the pseudogap regime of a trapped Fermi gas. Using a combined $T$-matrix theory with the local density approximation, we calculate strong-coupling corrections to single-particle local density of s
We perform a variational quantum Monte Carlo simulation of the transition from a Bardeen-Cooper-Schrieffer superfluid (BCS) to a Bose-Einstein condensate (BEC) at zero temperature. The model Hamiltonian involves an attractive short range two body int
We study collective excitation modes of a fermionic gas of $^6$Li atoms in the BEC-BCS crossover regime. While measurements of the axial compression mode in the cigar-shaped trap close to a Feshbach resonance confirm theoretical expectations, the rad
We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of external magnetic field. We investigate the dynamics of the condensate order