ترغب بنشر مسار تعليمي؟ اضغط هنا

Expansion of a Fermi Cloud in the BCS-BEC Crossover

98   0   0.0 ( 0 )
 نشر من قبل Nicola Manini
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the free expansion of a dilute two-component Fermi gas with attractive interspecies interaction in the BCS-BEC crossover. We apply a time-dependent parameter-free density-functional theory by using two choices of the equation of state: an analytic formula based on Monte Carlo data and the mean-field equation of state resulting from the extended BCS equations. The calculated axial and transverse radii and the aspect ratio of the expanding cloud are compared to experimental data on vapors of ^6Li atoms. Remarkably, the mean-field theory shows a better agreement with the experiments than the theory based on the Monte Carlo equation of state. Both theories predict a measurable dependence of the aspect ratio on expansion time and on scattering length.



قيم البحث

اقرأ أيضاً

We report on experiments in $^6$Li Fermi gases near Feshbach resonances. A broad s-wave resonance is used to form a Bose-Einstein condensate of weakly bound $^6$Li$_2$ molecules in a crossed optical trap. The measured molecule-molecule scattering len gth of $170^{+100}_{-60}$ nm at 770 G is found in good agreement with theory. The expansion energy of the cloud in the BEC-BCS crossover region is measured. Finally we discuss the properties of p-wave Feshbach resonances observed near 200 Gauss and new s-wave resonances in the heteronuclear $^6$Li- $^7$Li mixture.
We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance following an abrupt jump in the atomic interaction resulting from a change of external magnetic field. We investigate the dynamics of the condensate order parameter and pair wavefunction for a range of field strengths. When the abrupt jump is sufficient to span the BCS to BEC crossover, we show that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance channel dominated resonances observed in the 40K and 6Li. Focusing on material parameters tailored to the 40K Feshbach resonance system at 202.1 gauss, we comment on the integrity of the fast sweet projection technique as a vehicle to explore the condensed phase in the crossover region
We report Bose-Einstein condensation of weakly bound $^6$Li$_2$molecules in a crossed optical trap near a Feshbach resonance. We measure a molecule-molecule scattering length of$170^{+100}_{-60}$ nm at 770 G, in good agreement with theory.We study th e expansion of the cloud in the BEC-BCS crossoverregion.
The Quantum Monte Carlo method for spin 1/2 fermions at finite temperature is formulated for dilute systems with an s-wave interaction. The motivation and the formalism are discussed along with descriptions of the algorithm and various numerical issu es. We report on results for the energy, entropy and chemical potential as a function of temperature. We give upper bounds on the critical temperature T_c for the onset of superfluidity, obtained by studying the finite size scaling of the condensate fraction. All of these quantities were computed for couplings around the unitary regime in the range -0.5 le (k_F a)^{-1} le 0.2, where a is the s-wave scattering length and k_F is the Fermi momentum of a non-interacting gas at the same density. In all cases our data is consistent with normal Fermi gas behavior above a characteristic temperature T_0 > T_c, which depends on the coupling and is obtained by studying the deviation of the caloric curve from that of a free Fermi gas. For T_c < T < T_0 we find deviations from normal Fermi gas behavior that can be attributed to pairing effects. Low temperature results for the energy and the pairing gap are shown and compared with Green Function Monte Carlo results by other groups.
We report on experimental studies on the collective behavior of a strongly interacting Fermi gas with tunable interactions and variable temperature. A scissors mode excitation in an elliptical trap is used to characterize the dynamics of the quantum gas in terms of hydrodynamic or near-collisionless behavior. We obtain a crossover phase diagram for collisional properties, showing a large region where a non-superfluid strongly interacting gas shows hydrodynamic behavior. In a narrow interaction regime on the BCS side of the crossover, we find a novel temperature-dependent damping peak, suggesting a relation to the superfluid phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا