ﻻ يوجد ملخص باللغة العربية
The description is presented for the dependence of the indirect exciton condensate density at the ring as a function of the polar angle at zero temperature with the involvement of the processes of formation and recombination of the excitons. In particular, starting from the quasi one-dimensional Gross-Pitaevskii equation with a spatially uniform generating term, we derive an exact analytical solution yielding the fragmentation of an exciton ring which is probably observed in the experiments.
Auger-like exciton-exciton annihilation (EEA) is considered the key fundamental limitation to quantum yield in devices based on excitons in two-dimensional (2d) materials. Since it is challenging to experimentally disentangle EEA from competing proce
We report on the spatially separated pump-probe study of indirect excitons in the inner ring in the exciton emission pattern. A pump laser beam generates the inner ring and a weaker probe laser beam is positioned in the inner ring. The probe beam is
We report on the kinetics of the inner ring in the exciton emission pattern. The formation time of the inner ring following the onset of the laser excitation is found to be about 30 ns. The inner ring was also found to disappear within 4 ns after the
Two-dimensional stacking fault defects embedded in a bulk crystal can provide a homogeneous trapping potential for carriers and excitons. Here we utilize state-of-the-art structural imaging coupled with density functional and effective-mass theory to
We study interlayer exchange coupling (IEC) based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction (MTJ). This mechanism complements the known IEC based on virtual electron hopping (or spin currents). We f