ﻻ يوجد ملخص باللغة العربية
We study interlayer exchange coupling (IEC) based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction (MTJ). This mechanism complements the known IEC based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based IEC may exceed the hopping based exchange coupling. We show that the Coulomb based exchange coupling, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the IEC on the dielectric properties of the insulating layer in MTJ is similar to magneto-electric (ME) effect where electric and magnetic degrees of freedom are coupled. We calculate the IEC as a function of temperature and electric field for MTJ with ferroelectric (FE) layer and show that IEC has a sharp decrease in the vicinity of the FE phase transition and varies strongly with external electric field.
Heterostructures composed of ferromagnetic layers that are mutually interacting through a nonmagnetic spacer are at the core of magnetic sensor and memory devices. In the present study, layer-resolved ferromagnetic resonance was used to investigate t
We study the combined effects of spin transfer torque, voltage modulation of interlayer exchange coupling and magnetic anisotropy on the switching behavior of perpendicular magnetic tunnel junctions (p-MTJs). In asymmetric p-MTJs, a linear-in-voltage
Magnetic tunnel junctions (MTJs) are basic building blocks for devices such as magnetic random access memories (MRAMs). The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of MTJs crucial for e
We study interlayer exchange interaction in magnetic tunnel junctions with ferroelectric barrier. We focus on the influence of image forces on the voltage dependence of the interlayer magnetic interaction (magneto-electric effect). The influence of t
We demonstrate a voltage-controlled exchange bias effect in CoFeB/MgO/CoFeB magnetic tunnel junctions that is related to the interfacial Fe(Co)Ox formed between the CoFeB electrodes and the MgO barrier. The unique combination of interfacial antiferro