ﻻ يوجد ملخص باللغة العربية
We report on the kinetics of the inner ring in the exciton emission pattern. The formation time of the inner ring following the onset of the laser excitation is found to be about 30 ns. The inner ring was also found to disappear within 4 ns after the laser termination. The latter process is accompanied by a jump in the photoluminescence (PL) intensity. The spatial dependence of the PL-jump indicates that the excitons outside of the region of laser excitation, including the inner ring region, are efficiently cooled to the lattice temperature even during the laser excitation. The ring formation and disappearance are explained in terms of exciton transport and cooling.
We report on the spatially separated pump-probe study of indirect excitons in the inner ring in the exciton emission pattern. A pump laser beam generates the inner ring and a weaker probe laser beam is positioned in the inner ring. The probe beam is
We study the evolution of the absorption spectrum of a modulation doped GaAs/AlGaAs semiconductor quantum well with decreasing the carrier density. We find that there is a critical density which marks the transition from a Fermi edge singularity to a
Wave functions of heavy-hole excitons in GaAs/Al$_{0.3}$Ga$_{0.7}$As square quantum wells (QWs) of various widths are calculated by the direct numerical solution of a three-dimensional Schrodinger equation using a finite-difference scheme. These wave
A Mach-Zehnder interferometer with spatial and spectral resolution was used to probe spontaneous coherence in cold exciton gases, which are implemented experimentally in the ring of indirect excitons in coupled quantum wells. A strong enhancement of
We demonstrate an electrostatic trap for indirect excitons in a field-effect structure based on coupled GaAs quantum wells. Within the plane of a double quantum well indirect excitons are trapped at the perimeter of a SiO2 area sandwiched between the