ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental observation of quantum entanglement in low dimensional spin systems

117   0   0.0 ( 0 )
 نشر من قبل Tatiana G. Rappoport
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report macroscopic magnetic measurements carried out in order to detect and characterize field-induced quantum entanglement in low dimensional spin systems. We analyze the pyroborate MgMnB_2O_5 and the and the warwickite MgTiOBO_3, systems with spin 5/2 and 1/2 respectively. By using the magnetic susceptibility as an entanglement witness we are able to quantify entanglement as a function of temperature and magnetic field. In addition, we experimentally distinguish for the first time a random singlet phase from a Griffiths phase. This analysis opens the possibility of a more detailed characterization of low dimensional materials.



قيم البحث

اقرأ أيضاً

We investigate the scaling of the Renyi $alpha$-entropies in one-dimensional gapped quantum spin models. We show that the block entropies with $alpha > 2$ violate the area law monotonicity and exhibit damped oscillations. Depending on the existence o f a factorized ground state, the oscillatory behavior occurs either below factorization or it extends indefinitely. The anomalous scaling corresponds to an entanglement-driven order that is independent of ground-state degeneracy and is revealed by a nonlocal order parameter defined as the sum of the single-copy entanglement over all blocks.
192 - L.Amico , F.Baroni , A.Fubini 2006
We study the pairwise entanglement close to separable ground states of a class of one dimensional quantum spin models. At T=0 we find that such ground states separate regions, in the space of the Hamiltonian parameters, which are characterized by qua litatively different types of entanglement, namely parallel and antiparallel entanglement; we further demonstrate that the range of the Concurrence diverges while approaching separable ground states, therefore evidencing that such states, with uncorrelated fluctuations, are reached by a long range reshuffling of the entanglement. We generalize our results to the analysis of quantum phase transitions occurring in bosonic and fermionic systems. Finally, the effects of finite temperature are considered: At T>0 we evidence the existence of a region where no pairwise entanglement survives, so that entanglement, if present, is genuinely multipartite.
The bulk electric polarization works as a nonlocal order parameter that characterizes topological quantum matters. Motivated by a recent paper [H. Watanabe et al., Phys. Rev. B 103, 134430 (2021)], we discuss magnetic analogs of the bulk polarization in one-dimensional quantum spin systems, that is, quantized magnetizations on the edges of one-dimensional quantum spin systems. The edge magnetization shares the topological origin with the fractional edge state of the topological odd-spin Haldane phases. Despite this topological origin, the edge magnetization can also appear in topologically trivial quantum phases. We develop straightforward field theoretical arguments that explain the characteristic properties of the edge magnetization. The field theory shows that a U(1) spin-rotation symmetry and a site-centered or bond-centered inversion symmetry protect the quantization of the edge magnetization. We proceed to discussions that quantum phases on nonzero magnetization plateaus can also have the quantized edge magnetization that deviates from the magnetization density in bulk. We demonstrate that the quantized edge magnetization distinguishes two quantum phases on a magnetization plateau separated by a quantum critical point. The edge magnetization exhibits an abrupt stepwise change from zero to $1/2$ at the quantum critical point because the quantum phase transition occurs in the presence of the symmetries protecting the quantization of the edge magnetization. We also show that the quantized edge magnetization can result from the spontaneous ferrimagnetic order.
116 - Marcin Szyniszewski 2018
We study low-dimensional quantum systems with analytical and computational methods. Firstly, the one-dimensional extended $t$-$V$ model of fermions with interactions of a finite range is investigated. The model exhibits a phase transition between liq uid and insulating regimes. We use various analytical approaches to generalise previous theoretical studies. We devise a strong coupling expansion to go beyond first-order perturbation theory. The method is insensitive to the presence or the lack of integrability of the system. We extract the ground state energy and critical parameters of the model near the Mott insulating commensurate density. We also study the possible charge-density-wave phases that exist when the model is at the critical density. Secondly, we investigate Mott-Wannier complexes of two (excitons), three (trions) and four (biexcitons) charge carriers in two-dimensional semiconductors. Our study also includes impurity-bound complexes. We provide a classification of trions and biexcitons in transition-metal dichalcogenides, which incorporates the difference of spin polarisation between molybdenum- and tungsten-based materials. Using the diffusion Monte Carlo method, which is statistically exact for these systems, we extract binding energies of the complexes for a complete set of parameters of the model. Our results are compared with theoretical and experimental work on transition-metal dichalcogenides. An agreement is found for excitonic and trionic results, but we also observe a large discrepancy in the theoretical biexcitonic binding energies as compared to the experimental values. Possible reasons for this are outlined. We also calculate contact pair densities, which in the future can be used in the determination of the contact interaction.
The ground-state ordering and dynamics of the two-dimensional (2D) S=1/2 frustrated Heisenberg antiferromagnet Cs_2CuCl_4 is explored using neutron scattering in high magnetic fields. We find that the dynamic correlations show a highly dispersive con tinuum of excited states, characteristic of the RVB state, arising from pairs of S=1/2 spinons. Quantum renormalization factors for the excitation energies (1.65) and incommensuration (0.56) are large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا