ﻻ يوجد ملخص باللغة العربية
We report macroscopic magnetic measurements carried out in order to detect and characterize field-induced quantum entanglement in low dimensional spin systems. We analyze the pyroborate MgMnB_2O_5 and the and the warwickite MgTiOBO_3, systems with spin 5/2 and 1/2 respectively. By using the magnetic susceptibility as an entanglement witness we are able to quantify entanglement as a function of temperature and magnetic field. In addition, we experimentally distinguish for the first time a random singlet phase from a Griffiths phase. This analysis opens the possibility of a more detailed characterization of low dimensional materials.
We investigate the scaling of the Renyi $alpha$-entropies in one-dimensional gapped quantum spin models. We show that the block entropies with $alpha > 2$ violate the area law monotonicity and exhibit damped oscillations. Depending on the existence o
We study the pairwise entanglement close to separable ground states of a class of one dimensional quantum spin models. At T=0 we find that such ground states separate regions, in the space of the Hamiltonian parameters, which are characterized by qua
The bulk electric polarization works as a nonlocal order parameter that characterizes topological quantum matters. Motivated by a recent paper [H. Watanabe et al., Phys. Rev. B 103, 134430 (2021)], we discuss magnetic analogs of the bulk polarization
We study low-dimensional quantum systems with analytical and computational methods. Firstly, the one-dimensional extended $t$-$V$ model of fermions with interactions of a finite range is investigated. The model exhibits a phase transition between liq
The ground-state ordering and dynamics of the two-dimensional (2D) S=1/2 frustrated Heisenberg antiferromagnet Cs_2CuCl_4 is explored using neutron scattering in high magnetic fields. We find that the dynamic correlations show a highly dispersive con