ﻻ يوجد ملخص باللغة العربية
We investigate the scaling of the Renyi $alpha$-entropies in one-dimensional gapped quantum spin models. We show that the block entropies with $alpha > 2$ violate the area law monotonicity and exhibit damped oscillations. Depending on the existence of a factorized ground state, the oscillatory behavior occurs either below factorization or it extends indefinitely. The anomalous scaling corresponds to an entanglement-driven order that is independent of ground-state degeneracy and is revealed by a nonlocal order parameter defined as the sum of the single-copy entanglement over all blocks.
We report macroscopic magnetic measurements carried out in order to detect and characterize field-induced quantum entanglement in low dimensional spin systems. We analyze the pyroborate MgMnB_2O_5 and the and the warwickite MgTiOBO_3, systems with sp
We study parametrically driven quantum oscillators and show that, even for weak coupling between the oscillators, they can exhibit various many-body states with broken time-translation symmetry. In the quantum-coherent regime, the symmetry breaking o
We present a method to measure the von Neumann entanglement entropy of ground states of quantum many-body systems which does not require access to the system wave function. The technique is based on a direct thermodynamic study of entanglement Hamilt
We investigate the dynamics of quantum entanglement after a global quench and uncover a qualitative difference between the behavior of the von Neumann entropy and higher Renyi entropies. We argue that the latter generically grow emph{sub-ballisticall
Quantum entanglement is one essential element to characterize many-body quantum systems. However, so far, the entanglement measures mainly restrict to Hermitian systems. Here, we propose a natural extension of entanglement and Renyi entropies to non-