ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental evidence of paired hole states in model high-$T_c$ compounds

49   0   0.0 ( 0 )
 نشر من قبل Andrivo Rusydi
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The distribution of holes in Sr$_{14-x}$Ca$_x$Cu$_{24}$O$_{41}$ (SCCO) is revisited with semi-emperical reanalysis of the x-ray absorption (XAS) data and exact-diagonalized cluster calculations. A new interpretation of the XAS data leads to much larger ladder hole densities than previously suggested. These new hole densities lead to a simple interpretation of the hole crystal (HC) recently reported with 1/3 and 1/5 wave vectors along the ladder. Our interpretation is consistent with paired holes in the rung of the ladders. Exact diagonalization results for a minimal model of the doped ladders suggest that the stabilization of spin structures consisting of 4 spins in a square plaquette as a result of resonance valence bond (RVB) physics suppresses the hole crystal with a 1/4 wave vector.

قيم البحث

اقرأ أيضاً

The electronic properties of Cerium (Ce) and ytterbium (Yb) intermetallic compounds may display a more local or more itinerant character depending on the interplay of the exchange interactions among the $4f$ electrons and the Kondo coupling between $ 4f$ and conduction electrons. For the more itinerant case, the materials form heavy-fermions once the Kondo effect is developed at low temperatures. Hence, a temperature variation occurs in the electronic structure that can be traced by investigating the optical conductivity ($sigma(omega)$) spectra. Remarkably, the temperature variation in the $sigma(omega)$ spectrum is still present in the more localized case, even though the Kondo effect is strongly suppressed. Here, we clarify the local and itinerant character in the electronic structure by investigating the temperature dependence in the $sigma(omega)$ spectra of various Ce and Yb compounds with a tetragonal ThCr$_2$Si$_2$-type crystal structure. We explain the temperature change in a unified manner. Above temperatures of about 100 K, the temperature dependence of the $sigma(omega)$ spectra is mainly due to the electron-phonon interaction, while the temperature dependence below is due to the Kondo effect.
55 - A. Rusydi , W. Ku , B. Schulz 2010
A new excitation is observed at 201 meV in the doped-hole ladder cuprate Sr$_{14}$Cu$_{24}$O$_{41}$, using ultraviolet resonance Raman scattering with incident light at 3.7 eV polarized along the direction of the rungs. The excitation is found to be of charge nature, with a temperature independent excitation energy, and can be understood via an intra-ladder pair-breaking process. The intensity tracks closely the order parameter of the charge density wave in the ladder (CDW$_L$), but persists above the CDW$_L$ transition temperature ($T_{CDW_L}$), indicating a strong local pairing above $T_{CDW_L}$. The 201 meV excitation vanishes in La$_{6}$Ca$_{8}$Cu$_{24}$O$_{41+delta}$, and La$_{5}$Ca$_{9}$Cu$_{24}$O$_{41}$ which are samples with no holes in the ladders. Our results suggest that the doped holes in the ladder are composite bosons consisting of paired holons that order below $T_{CDW}$.
We study the doping evolution of the electronic structure in the normal phase of high-$T_c$ cuprates. Electronic structure and Fermi surface of cuprates with single CuO$_2$ layer in the unit cell like La$_{2-x}$Sr$_x$CuO$_4$ have been calculated by t he LDA+GTB method in the regime of strong electron correlations (SEC) and compared to ARPES and quantum oscillations data. We have found two critical concentrations, $x_{c1}$ and $x_{c2}$, where the Fermi surface topology changes. Following I.M. Lifshitz ideas of the quantum phase transitions (QPT) of the 2.5-order we discuss the concentration dependence of the low temperature thermodynamics. The behavior of the electronic specific heat $delta(C/T) sim (x - x_c)^{1/2}$ is similar to the Loram and Cooper experimental data in the vicinity of $x_{c1} approx 0.15$.
Pseudogap regime for the prototype high-Tc compounds hole doped Bi2Sr2CaCu2O8-x (Bi2212) and electron doped Nd2-xCexCuO4 (NCCO) is described by means of novel generalized LDA+DMFT+Sk approach. Here conventional dynamical mean-field theory (DMFT) equa tions are supplied with additional (momentum dependent) self-energy Sk. In the present case Sk describes non-local dynamical correlations induced by short-ranged collective Heisenberg-like antiferromagnetic spin fluctuations. Material specific model parameters of two neighboring CuO2 layers of Bi2212 and single CuO2 layer of NCCO were obtained within local density approximation (LDA) and constrained LDA method. We show that Fermi surface in presence of the pseudogap fluctuations have perfectly visible hot-spots for NCCO while in Bi2212 there is just rather broad region with strong antiferromagnetic scattering. Results obtained are in good agreement with recent ARPES and optical experiments.
Recent STM measurements have observed many inhomogeneous patterns of the local density of states on the surface of high-T_c cuprates. As a first step to study such disordered strong correlated systems, we use the BdG equation for the t-t-t-J model wi th an impurity. The impurity is taken into account by a local potential or local variation of the hopping/exchange terms. Strong correlation is treated by a Gutzwiller mean-field theory with local Gutzwiller factors and local chemical potentials. It turned out that the potential impurity scattering is greatly suppressed, while the local variation of hoppings/exchanges is enhanced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا