ﻻ يوجد ملخص باللغة العربية
The electronic properties of Cerium (Ce) and ytterbium (Yb) intermetallic compounds may display a more local or more itinerant character depending on the interplay of the exchange interactions among the $4f$ electrons and the Kondo coupling between $4f$ and conduction electrons. For the more itinerant case, the materials form heavy-fermions once the Kondo effect is developed at low temperatures. Hence, a temperature variation occurs in the electronic structure that can be traced by investigating the optical conductivity ($sigma(omega)$) spectra. Remarkably, the temperature variation in the $sigma(omega)$ spectrum is still present in the more localized case, even though the Kondo effect is strongly suppressed. Here, we clarify the local and itinerant character in the electronic structure by investigating the temperature dependence in the $sigma(omega)$ spectra of various Ce and Yb compounds with a tetragonal ThCr$_2$Si$_2$-type crystal structure. We explain the temperature change in a unified manner. Above temperatures of about 100 K, the temperature dependence of the $sigma(omega)$ spectra is mainly due to the electron-phonon interaction, while the temperature dependence below is due to the Kondo effect.
Dynamical conductivity spectra s(w) have been measured for a diverse range of heavy-fermion (HF) Ce and Yb compounds. A characteristic excitation peak has been observed in the mid-infrared region of s(w) for all the compounds, and has been analyzed i
This review discusses the heavy-fermion superconductivity in Ce- and U-based compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure. Special attention will be paid to the theoretical background of these systems which are located close to a magnetic instability.
Cerium (Ce)-based heavy-fermion materials have a characteristic double-peak structure (mid-IR peak) in the optical conductivity [$sigma(omega)$] spectra originating from the strong conduction ($c$)--$f$ electron hybridization. To clarify the behavior
We report on single crystal growth and crystallographic parameters results of Ce$_2$PdIn$_8$, Ce$_3$PdIn$_{11}$, Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$. The Pt-systems Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$ are synthesized for the first time. All these c
A focus of recent experimental and theoretical studies on heavy fermion systems close to antiferromagnetic (AFM) quantum critical points (QCP) is directed toward revealing the nature of the fixed point, i.e., whether it is an itinerant antiferromagne