ﻻ يوجد ملخص باللغة العربية
We evaluate the dynamic structure factor $S(q,omega)$ of interacting one-dimensional spinless fermions with a nonlinear dispersion relation. The combined effect of the nonlinear dispersion and of the interactions leads to new universal features of $S(q,omega)$. The sharp peak $Spropto qdelta(omega-uq)$, characteristic for the Tomonaga-Luttinger model, broadens up; $S(q,omega)$ for a fixed $q$ becomes finite at arbitrarily large $omega$. The main spectral weight, however, is confined to a narrow frequency interval of the width $deltaomegasim q^2/m$. At the boundaries of this interval the structure factor exhibits power-law singularities with exponents depending on the interaction strength and on the wave number $q$.
The density distribution of the one-dimensional Hubbard model in a harmonic trapping potential is investigated in order to study the effect of the confining trap. Strong superimposed oscillations are always present on top of a uniform density cloud,
We investigate the spin-2 chain model corresponding to the small hopping limit of the spin-2 Bose-Hubbard model using density-matrix renormalization-group and time-evolution techniques. We calculate both static correlation functions and the dynamic s
We study electron transport in quasi-one-dimensional wires at relatively weak electrostatic confinements, where the Coulomb interaction distorts the ground state, leading to the bifurcation of the electronic system into two rows. Evidence of finite c
The response of composite Fermions to large wavevector scattering has been studied through phonon drag measurements. While the response retains qualitative features of the electron system at zero magnetic field, notable discrepancies develop as the s
We consider a screened Coulomb interaction between electrons in graphene and determine their dynamic response functions, such as a longitudinal and a transverse electric conductivity and a polarization function and compare them to the corresponding q