ترغب بنشر مسار تعليمي؟ اضغط هنا

Row coupling in an interacting quasi-one-dimensional quantum wire investigated using transport measurements

204   0   0.0 ( 0 )
 نشر من قبل Luke Smith
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study electron transport in quasi-one-dimensional wires at relatively weak electrostatic confinements, where the Coulomb interaction distorts the ground state, leading to the bifurcation of the electronic system into two rows. Evidence of finite coupling between the rows, resulting in bonding and antibonding states, is observed. At high dc source-drain bias, a structure is observed at 0.5(2e^2/h) due to parallel double-row transport, along with a structure at 0.25(2e^2/h), providing further evidence of coupling between the two rows.



قيم البحث

اقرأ أيضاً

Quantum spin transport is studied in an interacting quantum dot. It is found that a conductance plateau emerges in the non-linear charge conductance by a spin bias in the Kondo regime. The conductance plateau, as a complementary to the Kondo peak, or iginates from the strong electron correlation and exchange processes in the quantum dot, and can be regarded as one of the characteristics in quantum spin transport.
We study interaction-induced localization of electrons in an inhomogeneous quasi-one-dimensional system--a wire with two regions, one at low density and the other high. Quantum Monte Carlo techniques are used to treat the strong Coulomb interactions in the low density region, where localization of electrons occurs. The nature of the transition from high to low density depends on the density gradient--if it is steep, a barrier develops between the two regions, causing Coulomb blockade effects. Ferromagnetic spin polarization does not appear for any parameters studied. The picture emerging here is in good agreement with measurements of tunneling between two wires.
150 - E. Nakhmedov , O. Alekperov 2014
One-dimensional lattice with strong spin-orbit interactions (SOI) and Zeeman magnetic field is shown to lead to the formation of a helical charge-density wave (CDW) state near half-filling. Interplay of the magnetic field, SOI constants and the CDW g ap seems to support Majorana bound states under appropriate value of the external parameters. Explicit calculation of the quasi-particles wave functions supports a formation of the localized zero-energy state, bounded to the sample end-points. Symmetry classification of the system is provided. Relative value of the density of states shows a precise zero-energy peak at the center of the band in the non-trivial topological regime.
We evaluate the dynamic structure factor $S(q,omega)$ of interacting one-dimensional spinless fermions with a nonlinear dispersion relation. The combined effect of the nonlinear dispersion and of the interactions leads to new universal features of $S (q,omega)$. The sharp peak $Spropto qdelta(omega-uq)$, characteristic for the Tomonaga-Luttinger model, broadens up; $S(q,omega)$ for a fixed $q$ becomes finite at arbitrarily large $omega$. The main spectral weight, however, is confined to a narrow frequency interval of the width $deltaomegasim q^2/m$. At the boundaries of this interval the structure factor exhibits power-law singularities with exponents depending on the interaction strength and on the wave number $q$.
130 - W. J. Zhang , S. K. He , H. Xiao 2012
Superconducting triangular Nb wire networks with high normal-state resistance are fabricated by using a negative tone hydrogen silsesquioxane (HSQ) resist. Robust magnetoresistance oscillations are observed up to high magnetic fields and maintained a t low temperatures, due to the eective reduction of wire dimensions. Well-defined dips appear at integral and rational values (1/2, 1/3, 1/4) of the reduced flux f = Phi/Phi_0, which is the first observation in the triangular wire networks. These results are well consistent with theoretical calculations for the reduced critical temperature as a function of f.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا