ترغب بنشر مسار تعليمي؟ اضغط هنا

Missing 2k_F Response for Composite Fermions in Phonon Drag

89   0   0.0 ( 0 )
 نشر من قبل Scott Zelakiewicz
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Zelakiewicz




اسأل ChatGPT حول البحث

The response of composite Fermions to large wavevector scattering has been studied through phonon drag measurements. While the response retains qualitative features of the electron system at zero magnetic field, notable discrepancies develop as the system is varied from a half-filled Landau level by changing density or field. These deviations, which appear to be inconsistent with the current picture of composite Fermions, are absent if half-filling is maintained while changing density. There remains, however, a clear deviation from the temperature dependence anticipated for 2k_F scattering.



قيم البحث

اقرأ أيضاً

Using a novel structure, consisting of two, independently contacted graphene single layers separated by an ultra-thin dielectric, we experimentally measure the Coulomb drag of massless fermions in graphene. At temperatures higher than 50 K, the Coulo mb drag follows a temperature and carrier density dependence consistent with the Fermi liquid regime. As the temperature is reduced, the Coulomb drag exhibits giant fluctuations with an increasing amplitude, thanks to the interplay between coherent transport in the graphene layer and interaction between the two layers.
We present the first experimental study of mesoscopic fluctuations of Coulomb drag in a system with two layers of composite fermions, which are seen when either the magnetic field or carrier concentration are varied. These fluctuations cause an alter nating sign of the average drag. We study these fluctuations at different temperatures to establish the dominant dephasing mechanism of composite fermions.
The relation between the conductivity tensors of Composite Fermions and electrons is extended to second generation Composite Fermions. It is shown that it crucially depends on the coupling matrix for the Chern-Simons gauge field. The results are appl ied to a model of interacting Composite Fermions that can explain both the anomalous plateaus in spin polarization and the corresponding maxima in the resistivity observed in recent transport experiments.
The quantum Hall superfluid is presently the only viable candidate for a realization of quasiparticles with fractional Berry phase statistics. For a simple vortex excitation, relevant for a subset of fractional Hall states considered by Laughlin, non -trivial Berry phase statistics were demonstrated many years ago by Arovas, Schrieffer, and Wilczek. The quasiparticles are in general more complicated, described accurately in terms of excited composite fermions. We use the method developed by Kjonsberg, Myrheim and Leinaas to compute the Berry phase for a single composite-fermion quasiparticle, and find that it agrees with the effective magnetic field concept for composite fermions. We then evaluate the fractional statistics, related to the change in the Berry phase for a closed loop caused by the insertion of another composite-fermion quasiparticle in the interior. Our results support the general validity of fractional statistics in the quantum Hall superfluid, while also giving a quantitative account of corrections to it when the quasiparticle wave functions overlap. Many caveats, both practical and conceptual, are mentioned that will be relevant to an experimental measurement of the fractional statistics. A short report on some parts of this article has appeared previously.
We construct an action for the composite Dirac fermion consistent with symmetries of electrons projected to the lowest Landau level. First we construct a generalization of the $g=2$ electron that gives a smooth massless limit on any curved background . Using the symmetries of the microscopic electron theory in this massless limit we find a number of constraints on any low-energy effective theory. We find that any low-energy description must couple to a geometry which exhibits nontrivial curvature even on flat space-times. Any composite fermion must have an electric dipole moment proportional and orthogonal to the composite fermions wavevector. We construct the effective action for the composite Dirac fermion and calculate the physical stress tensor and current operators for this theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا