ﻻ يوجد ملخص باللغة العربية
The correlation-driven metal-insulator transition (MIT) of BaVS$_3$ was studied by polarized infrared spectroscopy. In the metallic state two types of electrons coexist at the Fermi energy: The quasi 1D metallic transport of $A_{1g}$ electrons is superimposed on the isotropic hopping conduction of localized $E_g$ electrons. The bad-metal character and the weak anisotropy are the consequences of the large effective mass $m_{eff}approx7m_e$ and scattering rate $Gammageq160$ meV of the quasi-particles in the $A_{1g}$ band. There is a pseudo-gap above $T_{MI}=69$ K, and in the insulating phase the gap follows the BCS-like temperature dependence of the structural order parameter with $Delta_{ch}approx42$ meV in the ground state. The MIT is described in terms of a weakly coupled two-band model.
The optical conductivity of charge carriers coupled to quantum phonons is studied in the framework of the one-dimensional spinless Holstein model. For one electron, variational diagonalisation yields exact results in the thermodynamic limit, whereas
Oxygen packaging in transition metal oxides determines the metal-oxygen hybridization and electronic occupation at metal orbitals. Strontium vanadate (SrVO$_3$), having a single electron in a $3d$ orbital, is thought to be the simplest example of str
Polarization dependent vanadium L edge X-ray absorption spectra of BaVS$_3$ single crystals are measured in the four phases of the compound. The difference between signals with the polarization textbf{E}$perp$textbf{c} and textbf{E}$parallel$textbf{c
We present accurate results for optical conductivity of the three dimensional Frohlich polaron in all coupling regimes. The systematic-error free diagrammatic quantum Monte Carlo method is employed where the Feynman graphs for the momentum-momentum c
La$_2$O$_3$Fe$_2$Se$_2$ can be explained in terms of Mott localization in sharp contrast with the metallic behavior of FeSe and other parent parent compounds of iron superconductors. We demonstrate that the key ingredient that makes La$_2$O$_3$Fe$_2$