ﻻ يوجد ملخص باللغة العربية
We present accurate results for optical conductivity of the three dimensional Frohlich polaron in all coupling regimes. The systematic-error free diagrammatic quantum Monte Carlo method is employed where the Feynman graphs for the momentum-momentum correlation function in imaginary time are summed up. The real-frequency optical conductivity is obtained by the analytic continuation with stochastic optimization. We compare numerical data with available perturbative and non-perturbative approaches to the optical conductivity and show that the picture of sharp resonances due to relaxed excited states in the strong coupling regime is ``washed outby large broadening of these states. As a result, the spectrum contains only a single-maximum broad peak with peculiar shape and a shoulder.
The polaron optical conductivity is derived within the strong-coupling expansion, which is asymptotically exact in the strong-coupling limit. The polaron optical conductivity band is provided by the multiphonon optical transitions. The polaron optica
We study the frequency dependence of the optical conductivity $text{Re} , sigma(omega)$ of the Heisenberg spin-$1/2$ chain in the thermal and near the transition to the many-body localized phase induced by the strength of a random $z$-directed magnet
The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infra
A path-integral representation is constructed for the Jahn-Teller polaron (JTP). It leads to a perturbation series that can be summed exactly by the diagrammatic Quantum Monte Carlo technique. The ground-state energy, effective mass, spectrum and den
The eigenstate thermalization hypothesis (ETH) is a successful theory that provides sufficient criteria for ergodicity in quantum many-body systems. Most studies were carried out for Hamiltonians relevant for ultracold quantum gases and single-compon