ﻻ يوجد ملخص باللغة العربية
Oxygen packaging in transition metal oxides determines the metal-oxygen hybridization and electronic occupation at metal orbitals. Strontium vanadate (SrVO$_3$), having a single electron in a $3d$ orbital, is thought to be the simplest example of strongly correlated metallic oxides. Here, we determine the effects of epitaxial strain on the electronic properties of SrVO$_3$ thin films, where the metal-oxide sublattice is corner-connected. Using x-ray absorption and x-ray linear dichroism at the V $L_{2,3}$ and O $K$-edges, it is observed that tensile or compressive epitaxial strain change the hierarchy of orbitals within the $t_{2g}$ and $e_g$ manifolds. Data show a remarkable $2p-3d$ hybridization, as well as a strain-induced reordering of the V $3d$($t_{2g}$, $e_g$) orbitals. The latter is itself accompanied by a consequent change of hybridization that modulates the hybrid $pi^*$ and $sigma^*$ orbitals and the carrier population at the metal ions, challenging a rigid band picture.
The multi-orbital Hubbard model is known to host various ordered states such as antiferromagnetism, ferromagnetism and orbital-order. Here we propose an engineered system - an ultrathin SrVO$_3$ film - to realize all said orders upon carrier doping,
Manipulating the orbital occupation of valence electrons via epitaxial strain in an effort to induce new functional properties requires considerations of how changes in the local bonding environment affect the band structure at the Fermi level. Using
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab
YBa$_2$Cu$_3$O$_{7-delta}$ is a good candidate to systematically study high-temperature superconductivity by nanoengineering using advanced epitaxy. An essential prerequisite for these studies are coherently strained YBa$_2$Cu$_3$O$_{7-delta}$ thin f
Several spin systems with low dimensionality develop a spin-dimer phase within a molecular orbital below TS, competing with long-range antiferromagnetic order. Very often, preferential orbital occupancy and ordering are the actual driving force for d