ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic properties of a disordered Heisenberg binary spin system with long-range exchange

51   0   0.0 ( 0 )
 نشر من قبل Guixin Tang
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The influence of substitutional disorder on the magnetic properties of disordered Heisenberg binary spin systems with long-range exchange integrals is studied. The equation of motion for the magnon Greens function which is decoupled by the Tyablikov approximation is solved in the Blackman-Esterling-Berk(BEB) coherent potential approximation(CPA) framework, where the environmental disorder term is treated by virtual crystal approximation. The long-range exchange integrals include a power-law decaying and an oscillating Ruderman-Kittel-Kasuya-Yosida(RKKY) exchange interaction. The resulting spectral density, which is calculated by CPA self-consistent equation, is then used to estimate the magnetization and Curie temperature. The results show, in the case of the three-dimensional simple cubic systems, a strong influence of ferromagnetic long-range exchange integrals on the magnetization and Curie temperature of the systems, which is obviously different from the calculation of short-range interaction.

قيم البحث

اقرأ أيضاً

We examine the concurrence and entanglement entropy in quantum spin chains with random long-range couplings, spatially decaying with a power-law exponent $alpha$. Using the strong disorder renormalization group (SDRG) technique, we find by analytical solution of the master equation a strong disorder fixed point, characterized by a fixed point distribution of the couplings with a finite dynamical exponent, which describes the system consistently in the regime $alpha > 1/2$. A numerical implementation of the SDRG method yields a power law spatial decay of the average concurrence, which is also confirmed by exact numerical diagonalization. However, we find that the lowest-order SDRG approach is not sufficient to obtain the typical value of the concurrence. We therefore implement a correction scheme which allows us to obtain the leading order corrections to the random singlet state. This approach yields a power-law spatial decay of the typical value of the concurrence, which we derive both by a numerical implementation of the corrections and by analytics. Next, using numerical SDRG, the entanglement entropy (EE) is found to be logarithmically enhanced for all $alpha$, corresponding to a critical behavior with an effective central charge $c = {rm ln} 2$, independent of $alpha$. This is confirmed by an analytical derivation. Using numerical exact diagonalization (ED), we confirm the logarithmic enhancement of the EE and a weak dependence on $alpha$. For a wide range of distances $l$, the EE fits a critical behavior with a central charge close to $c=1$, which is the same as for the clean Haldane-Shastry model with a power-la-decaying interaction with $alpha =2$. Consistent with this observation, we find using ED that the concurrence shows power law decay, albeit with smaller power exponents than obtained by SDRG.
Using a numerically exact technique we study spin transport and the evolution of spin-density excitation profiles in a disordered spin-chain with long-range interactions, decaying as a power-law, $r^{-alpha}$ with distance and $alpha<2$. Our study co nfirms the prediction of recent theories that the system is delocalized in this parameters regime. Moreover we find that for $alpha>3/2$ the underlying transport is diffusive with a transient super-diffusive tail, similarly to the situation in clean long-range systems. We generalize the Griffiths picture to long-range systems and show that it captures the essential properties of the exact dynamics.
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor t-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.
We study the very long-range bond-percolation problem on a linear chain with both sites and bonds dilution. Very long range means that the probability $p_{ij}$ for a connection between two occupied sites $i,j$ at a distance $r_{ij}$ decays as a power law, i.e. $p_{ij} = rho/[r_{ij}^alpha N^{1-alpha}]$ when $ 0 le alpha < 1$, and $p_{ij} = rho/[r_{ij} ln(N)]$ when $alpha = 1$. Site dilution means that the occupancy probability of a site is $0 < p_s le 1$. The behavior of this model results from the competition between long-range connectivity, which enhances the percolation, and site dilution, which weakens percolation. The case $alpha=0$ with $p_s =1 $ is well-known, being the exactly solvable mean-field model. The percolation order parameter $P_infty$ is investigated numerically for different values of $alpha$, $p_s$ and $rho$. We show that in the ranges $ 0 le alpha le 1$ and $0 < p_s le 1$ the percolation order parameter $P_infty$ depends only on the average connectivity $gamma$ of sites, which can be explicitly computed in terms of the three parameters $alpha$, $p_s$ and $rho$.
We study the disordered Heisenberg spin chain, which exhibits many body localization at strong disorder, in the weak to moderate disorder regime. A continued fraction calculation of dynamical correlations is devised, using a variational extrapolation of recurrents. Good convergence for the infinite chain limit is shown. We find that the local spin correlations decay at long times as $C sim t^{-beta}$, while the conductivity exhibits a low frequency power law $sigma sim omega^{alpha}$. The exponents depict sub-diffusive behavior $ beta < 1/2, alpha> 0 $ at all finite disorders, and convergence to the scaling result, $alpha+2beta = 1$, at large disorders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا