ﻻ يوجد ملخص باللغة العربية
We examine the concurrence and entanglement entropy in quantum spin chains with random long-range couplings, spatially decaying with a power-law exponent $alpha$. Using the strong disorder renormalization group (SDRG) technique, we find by analytical solution of the master equation a strong disorder fixed point, characterized by a fixed point distribution of the couplings with a finite dynamical exponent, which describes the system consistently in the regime $alpha > 1/2$. A numerical implementation of the SDRG method yields a power law spatial decay of the average concurrence, which is also confirmed by exact numerical diagonalization. However, we find that the lowest-order SDRG approach is not sufficient to obtain the typical value of the concurrence. We therefore implement a correction scheme which allows us to obtain the leading order corrections to the random singlet state. This approach yields a power-law spatial decay of the typical value of the concurrence, which we derive both by a numerical implementation of the corrections and by analytics. Next, using numerical SDRG, the entanglement entropy (EE) is found to be logarithmically enhanced for all $alpha$, corresponding to a critical behavior with an effective central charge $c = {rm ln} 2$, independent of $alpha$. This is confirmed by an analytical derivation. Using numerical exact diagonalization (ED), we confirm the logarithmic enhancement of the EE and a weak dependence on $alpha$. For a wide range of distances $l$, the EE fits a critical behavior with a central charge close to $c=1$, which is the same as for the clean Haldane-Shastry model with a power-la-decaying interaction with $alpha =2$. Consistent with this observation, we find using ED that the concurrence shows power law decay, albeit with smaller power exponents than obtained by SDRG.
While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renor
The influence of substitutional disorder on the magnetic properties of disordered Heisenberg binary spin systems with long-range exchange integrals is studied. The equation of motion for the magnon Greens function which is decoupled by the Tyablikov
Using a numerically exact technique we study spin transport and the evolution of spin-density excitation profiles in a disordered spin-chain with long-range interactions, decaying as a power-law, $r^{-alpha}$ with distance and $alpha<2$. Our study co
We study a generalized quantum spin ladder with staggered long range interactions that decay as a power-law with exponent $alpha$. Using the density matrix renormalization group (DMRG) method and exact diagonalization, we show that this model undergo
Methods for understanding classical disordered spin systems with interactions conforming to some idealized graphical structure are well developed. The equilibrium properties of the Sherrington-Kirkpatrick model, which has a densely connected structur