ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasi-Periodic Systems

463   0   0.0 ( 0 )
 نشر من قبل Pranjal Bordia
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a many-body localized (MBL) quantum system, the ergodic hypothesis breaks down completely, giving rise to a fundamentally new many-body phase. Whether and under which conditions MBL can occur in higher dimensions remains an outstanding challenge both for experiments and theory. Here, we experimentally explore the relaxation dynamics of an interacting gas of fermionic potassium atoms loaded in a two-dimensional optical lattice with different quasi-periodic potentials along the two directions. We observe a dramatic slowing down of the relaxation for intermediate disorder strengths and attribute this partially to configurational rare-region effects. Beyond a critical disorder strength, we see negligible relaxation on experimentally accessible timescales, indicating a possible transition into a two-dimensional MBL phase. Our experiments reveal a distinct interplay of interactions, disorder, and dimensionality and provide insights into regimes where controlled theoretical approaches are scarce.



قيم البحث

اقرأ أيضاً

In the presence of sufficiently strong disorder or quasiperiodic fields, an interacting many-body system can fail to thermalize and become many-body localized. The associated transition is of particular interest, since it occurs not only in the groun d state but over an extended range of energy densities. So far, theoretical studies of the transition have focused mainly on the case of true-random disorder. In this work, we experimentally and numerically investigate the regime close to the many-body localization transition in quasiperiodic systems. We find slow relaxation of the density imbalance close to the transition, strikingly similar to the behavior near the transition in true-random systems. This dynamics is found to continuously slow down upon approaching the transition and allows for an estimate of the transition point. We discuss possible microscopic origins of these slow dynamics.
One fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept, challenging our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice. With our single site resolved measurements we track the relaxation dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a diverging length scale when approaching the localization transition. Our experiments mark the first demonstration and in-depth characterization of many-body localization in a regime not accessible with state-of-the-art simulations on classical computers.
We experimentally study many-body localization (MBL) with ultracold atoms in a weak one-dimensional quasiperiodic potential, which in the noninteracting limit exhibits an intermediate phase that is characterized by a mobility edge. We measure the tim e evolution of an initial charge density wave after a quench and analyze the corresponding relaxation exponents. We find clear signatures of MBL, when the corresponding noninteracting model is deep in the localized phase. We also critically compare and contrast our results with those from a tight-binding Aubry-Andr{e} model, which does not exhibit a single-particle intermediate phase, in order to identify signatures of a potential many-body intermediate phase.
Phase transitions are driven by collective fluctuations of a systems constituents that emerge at a critical point. This mechanism has been extensively explored for classical and quantum systems in equilibrium, whose critical behavior is described by a general theory of phase transitions. Recently, however, fundamentally distinct phase transitions have been discovered for out-of-equilibrium quantum systems, which can exhibit critical behavior that defies this description and is not well understood. A paradigmatic example is the many-body-localization (MBL) transition, which marks the breakdown of quantum thermalization. Characterizing quantum critical behavior in an MBL system requires the measurement of its entanglement properties over space and time, which has proven experimentally challenging due to stringent requirements on quantum state preparation and system isolation. Here, we observe quantum critical behavior at the MBL transition in a disordered Bose-Hubbard system and characterize its entanglement properties via its quantum correlations. We observe strong correlations, whose emergence is accompanied by the onset of anomalous diffusive transport throughout the system, and verify their critical nature by measuring their system-size dependence. The correlations extend to high orders in the quantum critical regime and appear to form via a sparse network of many-body resonances that spans the entire system. Our results unify the systems microscopic structure with its macroscopic quantum critical behavior, and they provide an essential step towards understanding criticality and universality in non-equilibrium systems.
In this paper we first compute the out-of-time-order correlators (OTOC) for both a phenomenological model and a random-field XXZ model in the many-body localized phase. We show that the OTOC decreases in power law in a many-body localized system at t he scrambling time. We also find that the OTOC can also be used to distinguish a many-body localized phase from an Anderson localized phase, while a normal correlator cannot. Furthermore, we prove an exact theorem that relates the growth of the second Renyi entropy in the quench dynamics to the decay of the OTOC in equilibrium. This theorem works for a generic quantum system. We discuss various implications of this theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا