ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Noise in the Electromechanical Shuttle

63   0   0.0 ( 0 )
 نشر من قبل Dian Wahyu Utami
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a type of Quantum Electro-Mechanical System, known as the shuttle system, first proposed by Gorelik et al., [Phys. Rev. Lett., 80, 4526, (1998)]. We use a quantum master equation treatment and compare the semi-classical solution to a full quantum simulation to reveal the dynamics, followed by a discussion of the current noise of the system. The transition between tunnelling and shuttling regime can be measured directly in the spectrum of the noise.



قيم البحث

اقرأ أيضاً

58 - A. Donarini , T. Novotny , 2005
A quantum shuttle is an archetypical nanoelectromechanical device, where the mechanical degree of freedom is quantized. Using a full-scale numerical solution of the generalized master equation describing the shuttle, we have recently shown [Novotn{y} {it et al.}, Phys. Rev. Lett. {bf 92}, 248302 (2004)] that for certain limits of the shuttle parameters one can distinguish three distinct charge transport mechanisms: (i) an incoherent tunneling regime, (ii) a shuttling regime, where the charge transport is synchronous with the mechanical motion, and (iii) a coexistence regime, where the device switches between the tunneling and shuttling regimes. While a study of the cross-over between these three regimes requires the full numerics, we show here that by identifying the appropriate time-scales it is possible to derive vastly simpler equations for each of the three regimes. The simplified equations allow a clear physical interpretation, are easily solved, and are in good agreement with the full numerics in their respective domains of validity.
We discuss methods for numerically solving the generalized Master equation GME which governs the time-evolution of the reduced density matrix of a mechanically movable mesoscopic device in a dissipative environment. As a specific example, we consider the quantum shuttle -- a generic quantum nanoelectromechanical system (NEMS). When expressed in the oscillator basis, the static limit of the GME becomes a large linear non-sparse matrix problem (characteristic size larger than 10^4 by 10^4) which however, as we show, can be treated using the Arnoldi iteration scheme. The numerical results are interpreted with the help of Wigner functions, and we compute the current and the noise in a few representative cases.
We describe a quantum electromechanical system(QEMS) comprising a single quantum dot harmonically bound between two electrodes and facilitating a tunneling current between them. An example of such a system is a fullerene molecule between two metal el ectrodes [Park et al., Nature, 407, 57 (2000)]. The description is based on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and thus incorporates the dynamics of both diagonal (population) and off diagonal (coherence) terms. We derive coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of freedom, including damping of the vibration and thermo-mechanical noise. This dynamical description is related to observable features of the system including the stationary current as a function of bias voltage.
Under a strong quantum measurement, the motion of an oscillator is disturbed by the measurement back-action, as required by the Heisenberg uncertainty principle. When a mechanical oscillator is continuously monitored via an electromagnetic cavity, as in a cavity optomechanical measurement, the back-action is manifest by the shot noise of incoming photons that becomes imprinted onto the motion of the oscillator. Following the photons leaving the cavity, the correlations appear as squeezing of quantum noise in the emitted field. Here we observe such ponderomotive squeezing in the microwave domain using an electromechanical device made out of a superconducting resonator and a drumhead mechanical oscillator. Under a strong measurement, the emitted field develops complex-valued quantum correlations, which in general are not completely accessible by standard homodyne measurements. We recover these hidden correlations, using a phase-sensitive measurement scheme employing two local oscillators. The utilization of hidden correlations presents a step forward in the detection of weak forces, as it allows to fully utilize the quantum noise reduction under the conditions of strong force sensitivity.
We demonstrate experimentally the possibility of revealing fluctuations in the eigenfrequency of a resonator when the frequency noise is of the telegraph type. Using a resonantly driven micromechanical resonator, we show that the time-averaged vibrat ion amplitude spectrum exhibits two peaks. They merge with an increasing rate of frequency switching and the spectrum displays an analog of motional narrowing. We also show that the moments of the complex amplitude depend strongly on the frequency noise characteristics. This dependence remains valid even when strong thermal or detector noise is present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا