ﻻ يوجد ملخص باللغة العربية
Under a strong quantum measurement, the motion of an oscillator is disturbed by the measurement back-action, as required by the Heisenberg uncertainty principle. When a mechanical oscillator is continuously monitored via an electromagnetic cavity, as in a cavity optomechanical measurement, the back-action is manifest by the shot noise of incoming photons that becomes imprinted onto the motion of the oscillator. Following the photons leaving the cavity, the correlations appear as squeezing of quantum noise in the emitted field. Here we observe such ponderomotive squeezing in the microwave domain using an electromechanical device made out of a superconducting resonator and a drumhead mechanical oscillator. Under a strong measurement, the emitted field develops complex-valued quantum correlations, which in general are not completely accessible by standard homodyne measurements. We recover these hidden correlations, using a phase-sensitive measurement scheme employing two local oscillators. The utilization of hidden correlations presents a step forward in the detection of weak forces, as it allows to fully utilize the quantum noise reduction under the conditions of strong force sensitivity.
We describe a quantum electromechanical system(QEMS) comprising a single quantum dot harmonically bound between two electrodes and facilitating a tunneling current between them. An example of such a system is a fullerene molecule between two metal el
Measurement of quantum systems inevitably involves disturbance in various forms. Within the limits imposed by quantum mechanics, however, one can design an ideal projective measurement that does not introduce a back action on the measured observable,
We consider a type of Quantum Electro-Mechanical System, known as the shuttle system, first proposed by Gorelik et al., [Phys. Rev. Lett., 80, 4526, (1998)]. We use a quantum master equation treatment and compare the semi-classical solution to a full
Control over the quantum states of a massive oscillator is important for several technological applications and to test the fundamental limits of quantum mechanics. Addition of an internal degree of freedom to the oscillator could be a valuable resou
We discuss methods for numerically solving the generalized Master equation GME which governs the time-evolution of the reduced density matrix of a mechanically movable mesoscopic device in a dissipative environment. As a specific example, we consider