ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple models suffice for the single dot quantum shuttle

59   0   0.0 ( 0 )
 نشر من قبل Andrea Donarini
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantum shuttle is an archetypical nanoelectromechanical device, where the mechanical degree of freedom is quantized. Using a full-scale numerical solution of the generalized master equation describing the shuttle, we have recently shown [Novotn{y} {it et al.}, Phys. Rev. Lett. {bf 92}, 248302 (2004)] that for certain limits of the shuttle parameters one can distinguish three distinct charge transport mechanisms: (i) an incoherent tunneling regime, (ii) a shuttling regime, where the charge transport is synchronous with the mechanical motion, and (iii) a coexistence regime, where the device switches between the tunneling and shuttling regimes. While a study of the cross-over between these three regimes requires the full numerics, we show here that by identifying the appropriate time-scales it is possible to derive vastly simpler equations for each of the three regimes. The simplified equations allow a clear physical interpretation, are easily solved, and are in good agreement with the full numerics in their respective domains of validity.

قيم البحث

اقرأ أيضاً

We consider a type of Quantum Electro-Mechanical System, known as the shuttle system, first proposed by Gorelik et al., [Phys. Rev. Lett., 80, 4526, (1998)]. We use a quantum master equation treatment and compare the semi-classical solution to a full quantum simulation to reveal the dynamics, followed by a discussion of the current noise of the system. The transition between tunnelling and shuttling regime can be measured directly in the spectrum of the noise.
We report reproducible fabrication of InP-InAsP nanowire light emitting diodes in which electron-hole recombination is restricted to a quantum-dot-sized InAsP section. The nanowire geometry naturally self-aligns the quantum dot with the n-InP and p-I nP ends of the wire, making these devices promising candidates for electrically-driven quantum optics experiments. We have investigated the operation of these nano-LEDs with a consistent series of experiments at room temperature and at 10 K, demonstrating the potential of this system for single photon applications.
Using background-free detection of spin-state-dependent resonance fluorescence from a single-electron charged quantum dot with an efficiency of 0:1%, we realize a single spin-photon interface where the detection of a scattered photon with 300 picosec ond time resolution projects the quantum dot spin to a definite spin eigenstate with fidelity exceeding 99%. The bunching of resonantly scattered photons reveals information about electron spin dynamics. High-fidelity fast spin-state initialization heralded by a single photon enables the realization of quantum information processing tasks such as non-deterministic distant spin entanglement. Given that we could suppress the measurement back-action to well below the natural spin-flip rate, realization of a quantum non-demolition measurement of a single spin could be achieved by increasing the fluorescence collection efficiency by a factor exceeding 20 using a photonic nanostructure.
We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The elect rostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a five-fold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transp arency. With an acceptance bandwidth of $delta f$ = 0.66~GHz the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For 50 ns storage time we measure $eta_{textrm{e2e}}^{textrm{50ns}} = 3.4(3)%$ emph{end-to-end efficiency} of the fiber-coupled memory, with an emph{total intrinsic efficiency} $eta_{textrm{int}} = 17(3)%$. Straightforward technological improvements can boost the end-to-end-efficiency to $eta_{textrm{e2e}} approx 35%$; beyond that increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional readout noise level of $9cdot 10^{-3}$ photons is dominated by atomic fluorescence, and for input pulses containing on average $mu_{1}=0.27(4)$ photons the signal to noise level would be unity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا