ترغب بنشر مسار تعليمي؟ اضغط هنا

Two generalizations of the Boltzmann equation

52   0   0.0 ( 0 )
 نشر من قبل Tamas Biro S
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We connect two different generalizations of Boltzmanns kinetic theory by requiring the same stationary solution. Non-extensive statistics can be produced by either using corresponding collision rates nonlinear in the one-particle densities or equivalently by using nontrivial energy composition rules in the energy conservation constraint. Direct transformation formulas between key functions of the two approaches are given.



قيم البحث

اقرأ أيضاً

Almost sixty years since Landauer linked the erasure of information with an increase of entropy, his famous erasure principle and byproducts like reversible computing are still subjected to debates in the scientific community. In this work we use the Liouville theorem to establish three different types of the relation between manipulation of information by a logical gate and the change of its physical entropy, corresponding to three types of the final state of environment. A time-reversible relation can be established when the final states of environment corresponding to different logical inputs are macroscopically distinguishable, showing a path to reversible computation and erasure of data with no entropy cost. A weak relation, giving the entropy change of $k ln 2$ for an erasure gate, can be deduced without any thermodynamical argument, only requiring the final states of environment to be macroscopically indistinguishable. The common strong relation that links entropy cost to heat requires the final states of environment to be in a thermal equilibrium. We argue in this work that much of the misunderstanding around the Landauers erasure principle stems from not properly distinguishing the limits and applicability of these three different relations. Due to new technological advances, we emphasize the importance of taking into account the time-reversible and weak types of relation to link the information manipulation and entropy cost in erasure gates beyond the considerations of environments in thermodynamic equilibrium.
We study the non-equilibrium statistical mechanics of a system of freely moving particles, in which binary encounters lead either to an elastic collision or to the disappearance of the pair. Such a system of {em ballistic annihilation} therefore cons tantly looses particles. The dynamics of perturbations around the free decay regime is investigated from the spectral properties of the linearized Boltzmann operator, that characterize linear excitations on all time scales. The linearized Boltzmann equation is solved in the hydrodynamic limit by a projection technique, which yields the evolution equations for the relevant coarse-grained fields and expressions for the transport coefficients. We finally present the results of Molecular Dynamics simulations that validate the theoretical predictions.
89 - C.A. Marsh , G. Backx , M.H.Ernst 1997
The algorithm for Dissipative Particle Dynamics (DPD), as modified by Espagnol and Warren, is used as a starting point for proving an H-theorem for the free energy and deriving hydrodynamic equations. Equilibrium and transport properties of the DPD f luid are explicitly calculated in terms of the system parameters for the continuous time version of the model.
The solutions of the one-dimensional homogeneous nonlinear Boltzmann equation are studied in the QE-limit (Quasi-Elastic; infinitesimal dissipation) by a combination of analytical and numerical techniques. Their behavior at large velocities differs q ualitatively from that for higher dimensional systems. In our generic model, a dissipative fluid is maintained in a non-equilibrium steady state by a stochastic or deterministic driving force. The velocity distribution for stochastic driving is regular and for infinitesimal dissipation, has a stretched exponential tail, with an unusual stretching exponent $b_{QE} = 2b$, twice as large as the standard one for the corresponding $d$-dimensional system at finite dissipation. For deterministic driving the behavior is more subtle and displays singularities, such as multi-peaked velocity distribution functions. We classify the corresponding velocity distributions according to the nature and scaling behavior of such singularities.
In this work we present a general derivation of relativistic fluid dynamics from the Boltzmann equation using the method of moments. The main difference between our approach and the traditional 14-moment approximation is that we will not close the fl uid-dynamical equations of motion by truncating the expansion of the distribution function. Instead, we keep all terms in the moment expansion. The reduction of the degrees of freedom is done by identifying the microscopic time scales of the Boltzmann equation and considering only the slowest ones. In addition, the equations of motion for the dissipative quantities are truncated according to a systematic power-counting scheme in Knudsen and inverse Reynolds number. We conclude that the equations of motion can be closed in terms of only 14 dynamical variables, as long as we only keep terms of second order in Knudsen and/or inverse Reynolds number. We show that, even though the equations of motion are closed in terms of these 14 fields, the transport coefficients carry information about all the moments of the distribution function. In this way, we can show that the particle-diffusion and shear-viscosity coefficients agree with the values given by the Chapman-Enskog expansion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا