ﻻ يوجد ملخص باللغة العربية
The solutions of the one-dimensional homogeneous nonlinear Boltzmann equation are studied in the QE-limit (Quasi-Elastic; infinitesimal dissipation) by a combination of analytical and numerical techniques. Their behavior at large velocities differs qualitatively from that for higher dimensional systems. In our generic model, a dissipative fluid is maintained in a non-equilibrium steady state by a stochastic or deterministic driving force. The velocity distribution for stochastic driving is regular and for infinitesimal dissipation, has a stretched exponential tail, with an unusual stretching exponent $b_{QE} = 2b$, twice as large as the standard one for the corresponding $d$-dimensional system at finite dissipation. For deterministic driving the behavior is more subtle and displays singularities, such as multi-peaked velocity distribution functions. We classify the corresponding velocity distributions according to the nature and scaling behavior of such singularities.
Combining analytical and numerical methods, we study within the framework of the homogeneous non-linear Boltzmann equation, a broad class of models relevant for the dynamics of dissipative fluids, including granular gases. We use the new method prese
The algorithm for Dissipative Particle Dynamics (DPD), as modified by Espagnol and Warren, is used as a starting point for proving an H-theorem for the free energy and deriving hydrodynamic equations. Equilibrium and transport properties of the DPD f
We connect two different generalizations of Boltzmanns kinetic theory by requiring the same stationary solution. Non-extensive statistics can be produced by either using corresponding collision rates nonlinear in the one-particle densities or equival
The physics of highly excited Rydberg atoms is governed by blockade or exclusion interactions that hinder the excitation of atoms in the proximity of a previously excited one. This leads to cooperative effects and a relaxation dynamics displaying spa
We study the kinetics of nonlinear irreversible fragmentation. Here fragmentation is induced by interactions/collisions between pairs of particles, and modelled by general classes of interaction kernels, and for several types of breakage models. We c