ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical solution of the time evolution of an entangled electron spin pair in a double quantum dot nanostructure

68   0   0.0 ( 0 )
 نشر من قبل Miriam Blaauboer
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Blaauboer




اسأل ChatGPT حول البحث

Using master equations we present an analytical solution of the time evolution of an entangled electron spin pair which can occupy 36 different quantum states in a double quantum dot nanostructure. This solution is exact given a few realistic assumptions and takes into account relaxation and decoherence rates of the electron spins as phenomenological parameters. Our systematic method of solving a large set of coupled differential equations is straightforward and can be used to obtain analytical predictions of the quantum evolution of a large class of complex quantum systems, for which until now commonly numerical solutions have been sought.


قيم البحث

اقرأ أيضاً

The paper reports an exact solution for the problem of spin evolution of radical ion pair in static magnetic and resonant microwave field taking into account Zeeman and hyperfine interactions and spin relaxation. The values of parameters that provide one of the four possible types of solution are analysed. It is demonstrated that in the absence of spin relaxation, besides the zero field invariant an invariant at large amplitudes of the resonant microwave field can be found. The two invariants open the possibility for simple calculation of microwave pulses to control quantum state of the radical pair. The effect of relaxation on the invariants is analysed and it is shown that changes in the high field invariant are induced by phase relaxation.
We present a proposal for deterministic quantum teleportation of electrons in a semiconductor nanostructure consisting of a single and a double quantum dot. The central issue addressed in this paper is how to design and implement the most efficient - in terms of the required number of single and two-qubit operations - deterministic teleportation protocol for this system. Using a group-theoretical analysis we show that deterministic teleportation requires a minimum of three single-qubit rotations and two entangling (sqrt(swap)) operations. These can be implemented for spin qubits in quantum dots using electron spin resonance (for single-spin rotations) and exchange interaction (for sqrt(swap) operations).
The two-electron exchange coupling in a nanowire double quantum dot (DQD) is shown to possess Moriyas anisotropic superexchange interaction under the influence of both the Rashba and Dresselhaus spin-orbit couplings (SOCs) and a Zeeman field. We reve al the controllability of the anisotropic exchange interaction via tuning the SOC and the direction of the external magnetic field. The exchange interaction can be transformed into an isotropic Heisenberg interaction, but the uniform magnetic field becomes an effective inhomogeneous field whose measurable inhomogeneity reflects the SOC strength. Moreover, the presence of the effective inhomogeneous field gives rise to an energy-level anticrossing in the low-energy spectrum of the DQD. By fitting the analytical expression for the energy gap to the experimental spectroscopic detections [S. Nadj-Perge et al., Phys. Rev. Lett. 108, 166801 (2012)], we obtain the complete features of the SOC in an InSb nanowire DQD.
Photon absorption in a semiconductor produces bright excitons that recombine very fast into photons. We here show that in a quantum dot set close to a p-doped reservoir, this absorption can produce a dark duo, i.e., an electron-hole pair that does no t emit light. This unexpected effect relies on the fact that the wave function for a hole leaks out of a finite-barrier dot less than for electron. This difference can render the positively charged trio unstable in the dot by tuning the applied bias voltage in a field-effect device. The unstable trio that would result from photon absorption in a positively charged dot, has to eject one of its two holes. The remaining duo can be made dark with a probability close to 100% after a few pumping cycles with linearly polarized photons, in this way engineering long-lived initial states for quantum information processing.
We investigate spin states of few electrons in a double quantum dot by coupling them weakly to a magnetic field resilient NbTiN microwave resonator. We observe a reduced resonator transmission if resonator photons and spin singlet states interact. Th is response vanishes in a magnetic field once the quantum dot ground state changes from a spin singlet into a spin triplet state. Based on this observation, we map the two-electron singlet-triplet crossover by resonant spectroscopy. By measuring the resonator only, we observe Pauli spin blockade known from transport experiments at finite source-drain bias and detect an unconventional spin blockade triggered by the absorption of resonator photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا