ترغب بنشر مسار تعليمي؟ اضغط هنا

Time evolution of spin state of radical ion pair in microwave field: An analytical solution

117   0   0.0 ( 0 )
 نشر من قبل Sergey Anishchik
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper reports an exact solution for the problem of spin evolution of radical ion pair in static magnetic and resonant microwave field taking into account Zeeman and hyperfine interactions and spin relaxation. The values of parameters that provide one of the four possible types of solution are analysed. It is demonstrated that in the absence of spin relaxation, besides the zero field invariant an invariant at large amplitudes of the resonant microwave field can be found. The two invariants open the possibility for simple calculation of microwave pulses to control quantum state of the radical pair. The effect of relaxation on the invariants is analysed and it is shown that changes in the high field invariant are induced by phase relaxation.

قيم البحث

اقرأ أيضاً

67 - M. Blaauboer 2005
Using master equations we present an analytical solution of the time evolution of an entangled electron spin pair which can occupy 36 different quantum states in a double quantum dot nanostructure. This solution is exact given a few realistic assumpt ions and takes into account relaxation and decoherence rates of the electron spins as phenomenological parameters. Our systematic method of solving a large set of coupled differential equations is straightforward and can be used to obtain analytical predictions of the quantum evolution of a large class of complex quantum systems, for which until now commonly numerical solutions have been sought.
The mechanism used by migratory birds to orientate themselves using the geomagnetic field is still a mystery in many species. The radical pair mechanism, in which very weak magnetic fields can influence certain types of spin-dependent chemical reacti ons, leading to biologically observable signals, has recently imposed itself as one of the most promising candidates for certain species. This is thanks both to its extreme sensitivity and its capacity to reproduce results from behavioral studies. Still, in order to gain a directional sensitivity, an anisotropic mechanism is needed. Recent proposals have explored the possibility that such an anisotropy is due to the electron-nucleus hyperfine interaction. In this work we explore a different possibility, in which the anisotropy is due to spin-orbit coupling between the electron spin and its angular momentum. We will show how a spin-orbit-coupling-based magnetic compass can have performances comparable with the usually-studied nuclear-hyperfine based mechanism. Our results could thus help researchers actively looking for candidate biological molecules which may host magnetoreceptive functions, both to describe magnetoreception in birds as well as to develop artificial chemical compass systems.
Radical pairs and the dynamics they undergo are prevalent in many chemical and biological systems. Specifically, it has been proposed that the radical pair mechanism results from a relatively strong hyperfine interaction with its intrinsic nuclear sp in environment. While the existence of this mechanism is undisputed, the nanoscale details remain to be experimentally shown. We analyze here the role of a quantum sensor in detecting the spin dynamics (non-Markovian) of individual radical pairs in the presence of a weak magnetic field. We show how quantum control methods can be used to set apart the dynamics of radical pair mechanism at various stages of the evolution. We envisage these findings having far-reaching implications to the understanding of the physical mechanism in magnetoreception and other bio-chemical processes with a microscopic detail.
Radical pair recombination reactions are known to be sensitive to the application of both low and high magnetic fields. The application of a weak magnetic field reduces the singlet yield of a singlet-born radical pair, whereas the application of a st rong magnetic field increases the singlet yield. The high field effect arises from energy conservation: when the magnetic field is stronger than the sum of the hyperfine fields in the two radicals, ${rm S}to {rm T}_{pm}$ transitions become energetically forbidden, thereby reducing the number of pathways for singlet to triplet interconversion. The low field effect arises from symmetry breaking: the application of a weak magnetic field lifts degeneracies among the zero field eigenstates and increases the number of pathways for singlet to triplet interconversion. However, the details of this effect are more subtle, and have not previously been properly explained. Here we present a complete analysis of the low field effect in a radical pair containing a single proton, and in a radical pair in which one of the radicals contains a large number of hyperfine-coupled nuclear spins. We find that the new transitions that occur when the field is switched on are between ${rm S}$ and ${rm T}_0$ in both cases, and not between ${rm S}$ and ${rm T}_{pm}$ as has previously been claimed. We then illustrate this result by using it in conjunction with semiclassical spin dynamics simulations to account for the observation of a biphasic--triphasic--biphasic transition with increasing magnetic field strength in the magnetic field effect on the time-dependent survival probability of a photoexcited carotenoid-porphyrin-fullerene radical pair.
We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet rec ombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene (CPF) triad containing considerably more nuclear spins which has recently been used to establish a proof of principle for the operation of a chemical compass [K. Maeda et al., Nature 453, 387 (2008)]. We find in particular that the intriguing biphasic behaviour that has been observed in the effect of an Earth-strength magnetic field on the time-dependent survival probability of the photo-excited C+PF- radical pair arises from a delicate balance between its asymmetric recombination and the relaxation of the electron spin in the carotenoid radical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا