ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Measurements of Magnetization in Mn12 Crystals

102   0   0.0 ( 0 )
 نشر من قبل Nurit Avraham
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spatial profile of the magnetization of Mn12 crystals in a swept magnetic field applied along the easy axis is determined from measurements of the local magnetic induction along the sample surface using an array of Hall sensors. We find that the magnetization is not uniform inside the sample, but rather shows some spatial oscillations which become more prominent around the resonance field values. Moreover, it appears that different regions of the sample are at resonance at different values of the applied field and that the sweep rate of the internal magnetic induction is spatially non-uniform. We present a model which describes the evolution of the non-uniformities as a function of the applied field. Finally we show that the degree of non-uniformity can be manipulated by sweeping the magnetic field back and forth through part of the resonance.

قيم البحث

اقرأ أيضاً

The magnetic properties of a monolayer of Mn12 single molecule magnets grafted onto a Si substrate have been investigated using depth-controlled $beta$-detected nuclear magnetic resonance. A low energy beam of spin polarized radioactive 8Li was used to probe the local static magnetic field distribution near the Mn12 monolayer in the Si substrate. The resonance linewidth varies strongly as a function of implantation depth as a result of the magnetic dipolar fields generated by the Mn12 electronic magnetic moments. The temperature dependence of the linewidth indicates that the magnetic properties of the Mn12 moments in this low dimensional configuration differ from bulk Mn12.
Decoherence processes in crystals of molecular magnets are prototypical for interacting electronic spin systems. We analyze the Landau-Zener dynamics of the archetypical TbPc$_2$ complex diluted in a diamagnetic monocrystal. The dependence of the tun neling probability on the field sweep rate is evaluated in the framework of the recently proposed master equation in which the decoherence processes are described through a phenomenological Lindblad operator. Thus, we showcase low temperature magnetic measurements that complement resonant techniques in determining small tunnel splittings and dephasing times.
For the first time, the morphology and dynamics of spin avalanches in Mn12-Acetate crystals using magneto-optical imaging has been explored. We observe an inhomogeneous relaxation of the magnetization, the spins reversing first at one edge of the cry stal and a few milliseconds later at the other end. Our data fit well with the theory of magnetic deflagration, demonstrating that very slow deflagration rates can be obtained, which makes new types of experiments possible.
We theoretically demonstrate that the in-plane magnetization induced quantum anomalous Hall effect (QAHE) can be realized in atomic crystal layers of group-V elements with buckled honeycomb lattice. We first construct a general tight-binding Hamilton ian with $sp^3$ orbitals via Slater-Koster two-center approximation, and then numerically show that for weak and strong spin-orbit couplings the systems harbor QAHEs with Chern numbers of $mathcal{C}=pm1$ and $pm2$ , respectively. For the $mathcal{C}=pm1$ phases, we find the critical phase-transition magnetization from a trivial insulator to QAHE can become extremely small by tuning the spin-orbit coupling strength. Although the resulting band gap is small, it can be remarkably enhanced by orders via tilting the magnetization slightly away from the in-plane orientation. For the $mathcal{C}=pm2$ phases, we find that the band gap is large enough for the room-temperature observation. Although the critical magnetization is relatively large, it can be effectively decreased by applying a strain. All these suggest that it is experimentally feasible to realize high-temperature QAHE from in-plane magnetization in atomic crystal layers of group-V elements.
105 - A. Cornia , R. Sessoli , L. Sorace 2001
The problem of the role of transverse fields in Mn12-acetate, a molecular nanomagnet, is still open. We present structural evidences that the disorder of the acetic acid of crystallization indices sizeable distortion of the Mn(III) sites, giving rise to six different isomers, four of them with symmetry lower than tetragonal. Using a ligand field approach the effect of the structure modifications on the second order transverse magnetic anisotropy, forbidden in tetragonal symmetry, has been evaluated. The order of magnitude of the quadratic transverse anisotropies well agree with the values derived by the analysis of the field sweep dependence of the hysteresis loops performed by Mertes et al. (Phys. Rev. Lett 87, 227205 (2001)) and allows to better simulate the EPR spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا